![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelreal | GIF version |
Description: Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
opelreal | ⊢ (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴 ∈ R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2177 | . 2 ⊢ 0R = 0R | |
2 | df-r 7823 | . . . 4 ⊢ ℝ = (R × {0R}) | |
3 | 2 | eleq2i 2244 | . . 3 ⊢ (⟨𝐴, 0R⟩ ∈ ℝ ↔ ⟨𝐴, 0R⟩ ∈ (R × {0R})) |
4 | opelxp 4658 | . . 3 ⊢ (⟨𝐴, 0R⟩ ∈ (R × {0R}) ↔ (𝐴 ∈ R ∧ 0R ∈ {0R})) | |
5 | 0r 7751 | . . . . . 6 ⊢ 0R ∈ R | |
6 | 5 | elexi 2751 | . . . . 5 ⊢ 0R ∈ V |
7 | 6 | elsn 3610 | . . . 4 ⊢ (0R ∈ {0R} ↔ 0R = 0R) |
8 | 7 | anbi2i 457 | . . 3 ⊢ ((𝐴 ∈ R ∧ 0R ∈ {0R}) ↔ (𝐴 ∈ R ∧ 0R = 0R)) |
9 | 3, 4, 8 | 3bitri 206 | . 2 ⊢ (⟨𝐴, 0R⟩ ∈ ℝ ↔ (𝐴 ∈ R ∧ 0R = 0R)) |
10 | 1, 9 | mpbiran2 941 | 1 ⊢ (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴 ∈ R) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {csn 3594 ⟨cop 3597 × cxp 4626 Rcnr 7298 0Rc0r 7299 ℝcr 7812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-eprel 4291 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-1o 6419 df-oadd 6423 df-omul 6424 df-er 6537 df-ec 6539 df-qs 6543 df-ni 7305 df-pli 7306 df-mi 7307 df-lti 7308 df-plpq 7345 df-mpq 7346 df-enq 7348 df-nqqs 7349 df-plqqs 7350 df-mqqs 7351 df-1nqqs 7352 df-rq 7353 df-ltnqqs 7354 df-inp 7467 df-i1p 7468 df-enr 7727 df-nr 7728 df-0r 7732 df-r 7823 |
This theorem is referenced by: ltresr 7840 pitore 7851 recnnre 7852 peano1nnnn 7853 ax1cn 7862 ax1re 7863 axaddrcl 7866 axmulrcl 7868 axrnegex 7880 axprecex 7881 axcnre 7882 axcaucvglemres 7900 axpre-suploclemres 7902 |
Copyright terms: Public domain | W3C validator |