ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelreal GIF version

Theorem opelreal 7726
Description: Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
Assertion
Ref Expression
opelreal (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)

Proof of Theorem opelreal
StepHypRef Expression
1 eqid 2154 . 2 0R = 0R
2 df-r 7721 . . . 4 ℝ = (R × {0R})
32eleq2i 2221 . . 3 (⟨𝐴, 0R⟩ ∈ ℝ ↔ ⟨𝐴, 0R⟩ ∈ (R × {0R}))
4 opelxp 4609 . . 3 (⟨𝐴, 0R⟩ ∈ (R × {0R}) ↔ (𝐴R ∧ 0R ∈ {0R}))
5 0r 7649 . . . . . 6 0RR
65elexi 2721 . . . . 5 0R ∈ V
76elsn 3572 . . . 4 (0R ∈ {0R} ↔ 0R = 0R)
87anbi2i 453 . . 3 ((𝐴R ∧ 0R ∈ {0R}) ↔ (𝐴R ∧ 0R = 0R))
93, 4, 83bitri 205 . 2 (⟨𝐴, 0R⟩ ∈ ℝ ↔ (𝐴R ∧ 0R = 0R))
101, 9mpbiran2 926 1 (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1332  wcel 2125  {csn 3556  cop 3559   × cxp 4577  Rcnr 7196  0Rc0r 7197  cr 7710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-eprel 4244  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-1o 6353  df-oadd 6357  df-omul 6358  df-er 6469  df-ec 6471  df-qs 6475  df-ni 7203  df-pli 7204  df-mi 7205  df-lti 7206  df-plpq 7243  df-mpq 7244  df-enq 7246  df-nqqs 7247  df-plqqs 7248  df-mqqs 7249  df-1nqqs 7250  df-rq 7251  df-ltnqqs 7252  df-inp 7365  df-i1p 7366  df-enr 7625  df-nr 7626  df-0r 7630  df-r 7721
This theorem is referenced by:  ltresr  7738  pitore  7749  recnnre  7750  peano1nnnn  7751  ax1cn  7760  ax1re  7761  axaddrcl  7764  axmulrcl  7766  axrnegex  7778  axprecex  7779  axcnre  7780  axcaucvglemres  7798  axpre-suploclemres  7800
  Copyright terms: Public domain W3C validator