| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelreal | GIF version | ||
| Description: Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| opelreal | ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . 2 ⊢ 0R = 0R | |
| 2 | df-r 7965 | . . . 4 ⊢ ℝ = (R × {0R}) | |
| 3 | 2 | eleq2i 2273 | . . 3 ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 〈𝐴, 0R〉 ∈ (R × {0R})) |
| 4 | opelxp 4718 | . . 3 ⊢ (〈𝐴, 0R〉 ∈ (R × {0R}) ↔ (𝐴 ∈ R ∧ 0R ∈ {0R})) | |
| 5 | 0r 7893 | . . . . . 6 ⊢ 0R ∈ R | |
| 6 | 5 | elexi 2786 | . . . . 5 ⊢ 0R ∈ V |
| 7 | 6 | elsn 3654 | . . . 4 ⊢ (0R ∈ {0R} ↔ 0R = 0R) |
| 8 | 7 | anbi2i 457 | . . 3 ⊢ ((𝐴 ∈ R ∧ 0R ∈ {0R}) ↔ (𝐴 ∈ R ∧ 0R = 0R)) |
| 9 | 3, 4, 8 | 3bitri 206 | . 2 ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ (𝐴 ∈ R ∧ 0R = 0R)) |
| 10 | 1, 9 | mpbiran2 944 | 1 ⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 {csn 3638 〈cop 3641 × cxp 4686 Rcnr 7440 0Rc0r 7441 ℝcr 7954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-eprel 4349 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-1o 6520 df-oadd 6524 df-omul 6525 df-er 6638 df-ec 6640 df-qs 6644 df-ni 7447 df-pli 7448 df-mi 7449 df-lti 7450 df-plpq 7487 df-mpq 7488 df-enq 7490 df-nqqs 7491 df-plqqs 7492 df-mqqs 7493 df-1nqqs 7494 df-rq 7495 df-ltnqqs 7496 df-inp 7609 df-i1p 7610 df-enr 7869 df-nr 7870 df-0r 7874 df-r 7965 |
| This theorem is referenced by: ltresr 7982 pitore 7993 recnnre 7994 peano1nnnn 7995 ax1cn 8004 ax1re 8005 axaddrcl 8008 axmulrcl 8010 axrnegex 8022 axprecex 8023 axcnre 8024 axcaucvglemres 8042 axpre-suploclemres 8044 |
| Copyright terms: Public domain | W3C validator |