ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelres GIF version

Theorem opelres 4896
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
Hypothesis
Ref Expression
opelres.1 𝐵 ∈ V
Assertion
Ref Expression
opelres (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))

Proof of Theorem opelres
StepHypRef Expression
1 df-res 4623 . . 3 (𝐶𝐷) = (𝐶 ∩ (𝐷 × V))
21eleq2i 2237 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶 ∩ (𝐷 × V)))
3 elin 3310 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 ∩ (𝐷 × V)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐷 × V)))
4 opelres.1 . . . 4 𝐵 ∈ V
5 opelxp 4641 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝐷 × V) ↔ (𝐴𝐷𝐵 ∈ V))
64, 5mpbiran2 936 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝐷 × V) ↔ 𝐴𝐷)
76anbi2i 454 . 2 ((⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐷 × V)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))
82, 3, 73bitri 205 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 2141  Vcvv 2730  cin 3120  cop 3586   × cxp 4609  cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051  df-xp 4617  df-res 4623
This theorem is referenced by:  brres  4897  opelresg  4898  opres  4900  dmres  4912  elres  4927  relssres  4929  resiexg  4936  iss  4937  asymref  4996  ssrnres  5053  cnvresima  5100  ressn  5151  funssres  5240  fcnvres  5381
  Copyright terms: Public domain W3C validator