| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelres | GIF version | ||
| Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) |
| Ref | Expression |
|---|---|
| opelres.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelres | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4731 | . . 3 ⊢ (𝐶 ↾ 𝐷) = (𝐶 ∩ (𝐷 × V)) | |
| 2 | 1 | eleq2i 2296 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ∩ (𝐷 × V))) |
| 3 | elin 3387 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∩ (𝐷 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝐷 × V))) | |
| 4 | opelres.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | opelxp 4749 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × V) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ V)) | |
| 6 | 4, 5 | mpbiran2 947 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × V) ↔ 𝐴 ∈ 𝐷) |
| 7 | 6 | anbi2i 457 | . 2 ⊢ ((〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝐷 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| 8 | 2, 3, 7 | 3bitri 206 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2200 Vcvv 2799 ∩ cin 3196 〈cop 3669 × cxp 4717 ↾ cres 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-xp 4725 df-res 4731 |
| This theorem is referenced by: brres 5011 opelresg 5012 opres 5014 dmres 5026 elres 5041 relssres 5043 resiexg 5050 iss 5051 restidsing 5061 asymref 5114 ssrnres 5171 cnvresima 5218 ressn 5269 funssres 5360 fcnvres 5509 |
| Copyright terms: Public domain | W3C validator |