ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelres GIF version

Theorem opelres 4983
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
Hypothesis
Ref Expression
opelres.1 𝐵 ∈ V
Assertion
Ref Expression
opelres (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))

Proof of Theorem opelres
StepHypRef Expression
1 df-res 4705 . . 3 (𝐶𝐷) = (𝐶 ∩ (𝐷 × V))
21eleq2i 2274 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶 ∩ (𝐷 × V)))
3 elin 3364 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 ∩ (𝐷 × V)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐷 × V)))
4 opelres.1 . . . 4 𝐵 ∈ V
5 opelxp 4723 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝐷 × V) ↔ (𝐴𝐷𝐵 ∈ V))
64, 5mpbiran2 944 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝐷 × V) ↔ 𝐴𝐷)
76anbi2i 457 . 2 ((⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐷 × V)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))
82, 3, 73bitri 206 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2178  Vcvv 2776  cin 3173  cop 3646   × cxp 4691  cres 4695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-xp 4699  df-res 4705
This theorem is referenced by:  brres  4984  opelresg  4985  opres  4987  dmres  4999  elres  5014  relssres  5016  resiexg  5023  iss  5024  restidsing  5034  asymref  5087  ssrnres  5144  cnvresima  5191  ressn  5242  funssres  5332  fcnvres  5481
  Copyright terms: Public domain W3C validator