ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelres GIF version

Theorem opelres 4927
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
Hypothesis
Ref Expression
opelres.1 𝐵 ∈ V
Assertion
Ref Expression
opelres (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))

Proof of Theorem opelres
StepHypRef Expression
1 df-res 4653 . . 3 (𝐶𝐷) = (𝐶 ∩ (𝐷 × V))
21eleq2i 2256 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶 ∩ (𝐷 × V)))
3 elin 3333 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝐶 ∩ (𝐷 × V)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐷 × V)))
4 opelres.1 . . . 4 𝐵 ∈ V
5 opelxp 4671 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝐷 × V) ↔ (𝐴𝐷𝐵 ∈ V))
64, 5mpbiran2 943 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝐷 × V) ↔ 𝐴𝐷)
76anbi2i 457 . 2 ((⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐷 × V)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))
82, 3, 73bitri 206 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶𝐴𝐷))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wcel 2160  Vcvv 2752  cin 3143  cop 3610   × cxp 4639  cres 4643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-opab 4080  df-xp 4647  df-res 4653
This theorem is referenced by:  brres  4928  opelresg  4929  opres  4931  dmres  4943  elres  4958  relssres  4960  resiexg  4967  iss  4968  restidsing  4978  asymref  5029  ssrnres  5086  cnvresima  5133  ressn  5184  funssres  5273  fcnvres  5414
  Copyright terms: Public domain W3C validator