![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelres | GIF version |
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
opelres.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelres | ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 ↾ 𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4640 | . . 3 ⊢ (𝐶 ↾ 𝐷) = (𝐶 ∩ (𝐷 × V)) | |
2 | 1 | eleq2i 2244 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 ↾ 𝐷) ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶 ∩ (𝐷 × V))) |
3 | elin 3320 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 ∩ (𝐷 × V)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐷 × V))) | |
4 | opelres.1 | . . . 4 ⊢ 𝐵 ∈ V | |
5 | opelxp 4658 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐷 × V) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ V)) | |
6 | 4, 5 | mpbiran2 941 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐷 × V) ↔ 𝐴 ∈ 𝐷) |
7 | 6 | anbi2i 457 | . 2 ⊢ ((⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐷 × V)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
8 | 2, 3, 7 | 3bitri 206 | 1 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 ↾ 𝐷) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2148 Vcvv 2739 ∩ cin 3130 ⟨cop 3597 × cxp 4626 ↾ cres 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-xp 4634 df-res 4640 |
This theorem is referenced by: brres 4915 opelresg 4916 opres 4918 dmres 4930 elres 4945 relssres 4947 resiexg 4954 iss 4955 restidsing 4965 asymref 5016 ssrnres 5073 cnvresima 5120 ressn 5171 funssres 5260 fcnvres 5401 |
Copyright terms: Public domain | W3C validator |