Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelres | GIF version |
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
opelres.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelres | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4621 | . . 3 ⊢ (𝐶 ↾ 𝐷) = (𝐶 ∩ (𝐷 × V)) | |
2 | 1 | eleq2i 2237 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ∩ (𝐷 × V))) |
3 | elin 3310 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∩ (𝐷 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝐷 × V))) | |
4 | opelres.1 | . . . 4 ⊢ 𝐵 ∈ V | |
5 | opelxp 4639 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × V) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ V)) | |
6 | 4, 5 | mpbiran2 936 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × V) ↔ 𝐴 ∈ 𝐷) |
7 | 6 | anbi2i 454 | . 2 ⊢ ((〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝐷 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
8 | 2, 3, 7 | 3bitri 205 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2141 Vcvv 2730 ∩ cin 3120 〈cop 3584 × cxp 4607 ↾ cres 4611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-opab 4049 df-xp 4615 df-res 4621 |
This theorem is referenced by: brres 4895 opelresg 4896 opres 4898 dmres 4910 elres 4925 relssres 4927 resiexg 4934 iss 4935 asymref 4994 ssrnres 5051 cnvresima 5098 ressn 5149 funssres 5238 fcnvres 5379 |
Copyright terms: Public domain | W3C validator |