![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelres | GIF version |
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
opelres.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelres | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4653 | . . 3 ⊢ (𝐶 ↾ 𝐷) = (𝐶 ∩ (𝐷 × V)) | |
2 | 1 | eleq2i 2256 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ∩ (𝐷 × V))) |
3 | elin 3333 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∩ (𝐷 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝐷 × V))) | |
4 | opelres.1 | . . . 4 ⊢ 𝐵 ∈ V | |
5 | opelxp 4671 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × V) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ V)) | |
6 | 4, 5 | mpbiran2 943 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × V) ↔ 𝐴 ∈ 𝐷) |
7 | 6 | anbi2i 457 | . 2 ⊢ ((〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝐷 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
8 | 2, 3, 7 | 3bitri 206 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2160 Vcvv 2752 ∩ cin 3143 〈cop 3610 × cxp 4639 ↾ cres 4643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-opab 4080 df-xp 4647 df-res 4653 |
This theorem is referenced by: brres 4928 opelresg 4929 opres 4931 dmres 4943 elres 4958 relssres 4960 resiexg 4967 iss 4968 restidsing 4978 asymref 5029 ssrnres 5086 cnvresima 5133 ressn 5184 funssres 5273 fcnvres 5414 |
Copyright terms: Public domain | W3C validator |