Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelres | GIF version |
Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) |
Ref | Expression |
---|---|
opelres.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opelres | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 4616 | . . 3 ⊢ (𝐶 ↾ 𝐷) = (𝐶 ∩ (𝐷 × V)) | |
2 | 1 | eleq2i 2233 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ∩ (𝐷 × V))) |
3 | elin 3305 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∩ (𝐷 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝐷 × V))) | |
4 | opelres.1 | . . . 4 ⊢ 𝐵 ∈ V | |
5 | opelxp 4634 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × V) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ V)) | |
6 | 4, 5 | mpbiran2 931 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × V) ↔ 𝐴 ∈ 𝐷) |
7 | 6 | anbi2i 453 | . 2 ⊢ ((〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝐷 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
8 | 2, 3, 7 | 3bitri 205 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∈ wcel 2136 Vcvv 2726 ∩ cin 3115 〈cop 3579 × cxp 4602 ↾ cres 4606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-res 4616 |
This theorem is referenced by: brres 4890 opelresg 4891 opres 4893 dmres 4905 elres 4920 relssres 4922 resiexg 4929 iss 4930 asymref 4989 ssrnres 5046 cnvresima 5093 ressn 5144 funssres 5230 fcnvres 5371 |
Copyright terms: Public domain | W3C validator |