| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelres | GIF version | ||
| Description: Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.) |
| Ref | Expression |
|---|---|
| opelres.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelres | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 4675 | . . 3 ⊢ (𝐶 ↾ 𝐷) = (𝐶 ∩ (𝐷 × V)) | |
| 2 | 1 | eleq2i 2263 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ∩ (𝐷 × V))) |
| 3 | elin 3346 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∩ (𝐷 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝐷 × V))) | |
| 4 | opelres.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 5 | opelxp 4693 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × V) ↔ (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ V)) | |
| 6 | 4, 5 | mpbiran2 943 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐷 × V) ↔ 𝐴 ∈ 𝐷) |
| 7 | 6 | anbi2i 457 | . 2 ⊢ ((〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 〈𝐴, 𝐵〉 ∈ (𝐷 × V)) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| 8 | 2, 3, 7 | 3bitri 206 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ↾ 𝐷) ↔ (〈𝐴, 𝐵〉 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∈ wcel 2167 Vcvv 2763 ∩ cin 3156 〈cop 3625 × cxp 4661 ↾ cres 4665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 df-res 4675 |
| This theorem is referenced by: brres 4952 opelresg 4953 opres 4955 dmres 4967 elres 4982 relssres 4984 resiexg 4991 iss 4992 restidsing 5002 asymref 5055 ssrnres 5112 cnvresima 5159 ressn 5210 funssres 5300 fcnvres 5441 |
| Copyright terms: Public domain | W3C validator |