Step | Hyp | Ref
| Expression |
1 | | simp1 997 |
. . . . . . . 8
⊢ ((𝐹 = 𝐺 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → 𝐹 = 𝐺) |
2 | 1 | fveq1d 5519 |
. . . . . . 7
⊢ ((𝐹 = 𝐺 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → (𝐹‘(𝑥 + 1)) = (𝐺‘(𝑥 + 1))) |
3 | 2 | oveq2d 5893 |
. . . . . 6
⊢ ((𝐹 = 𝐺 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐺‘(𝑥 + 1)))) |
4 | 3 | opeq2d 3787 |
. . . . 5
⊢ ((𝐹 = 𝐺 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩) |
5 | 4 | mpoeq3dva 5941 |
. . . 4
⊢ (𝐹 = 𝐺 → (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩)) |
6 | | fveq1 5516 |
. . . . 5
⊢ (𝐹 = 𝐺 → (𝐹‘𝑀) = (𝐺‘𝑀)) |
7 | 6 | opeq2d 3787 |
. . . 4
⊢ (𝐹 = 𝐺 → ⟨𝑀, (𝐹‘𝑀)⟩ = ⟨𝑀, (𝐺‘𝑀)⟩) |
8 | | freceq1 6395 |
. . . . 5
⊢ ((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩) → frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩)) |
9 | | freceq2 6396 |
. . . . 5
⊢
(⟨𝑀, (𝐹‘𝑀)⟩ = ⟨𝑀, (𝐺‘𝑀)⟩ → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺‘𝑀)⟩)) |
10 | 8, 9 | sylan9eq 2230 |
. . . 4
⊢ (((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩) ∧ ⟨𝑀, (𝐹‘𝑀)⟩ = ⟨𝑀, (𝐺‘𝑀)⟩) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺‘𝑀)⟩)) |
11 | 5, 7, 10 | syl2anc 411 |
. . 3
⊢ (𝐹 = 𝐺 → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺‘𝑀)⟩)) |
12 | 11 | rneqd 4858 |
. 2
⊢ (𝐹 = 𝐺 → ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺‘𝑀)⟩)) |
13 | | df-seqfrec 10448 |
. 2
⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) |
14 | | df-seqfrec 10448 |
. 2
⊢ seq𝑀( + , 𝐺) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺‘𝑀)⟩) |
15 | 12, 13, 14 | 3eqtr4g 2235 |
1
⊢ (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺)) |