Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq3 GIF version

Theorem seqeq3 10223
 Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq3 (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺))

Proof of Theorem seqeq3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 981 . . . . . . . 8 ((𝐹 = 𝐺𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ V) → 𝐹 = 𝐺)
21fveq1d 5423 . . . . . . 7 ((𝐹 = 𝐺𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ V) → (𝐹‘(𝑥 + 1)) = (𝐺‘(𝑥 + 1)))
32oveq2d 5790 . . . . . 6 ((𝐹 = 𝐺𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ V) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐺‘(𝑥 + 1))))
43opeq2d 3712 . . . . 5 ((𝐹 = 𝐺𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ V) → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩)
54mpoeq3dva 5835 . . . 4 (𝐹 = 𝐺 → (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩))
6 fveq1 5420 . . . . 5 (𝐹 = 𝐺 → (𝐹𝑀) = (𝐺𝑀))
76opeq2d 3712 . . . 4 (𝐹 = 𝐺 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑀, (𝐺𝑀)⟩)
8 freceq1 6289 . . . . 5 ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
9 freceq2 6290 . . . . 5 (⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑀, (𝐺𝑀)⟩ → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
108, 9sylan9eq 2192 . . . 4 (((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩) ∧ ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑀, (𝐺𝑀)⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
115, 7, 10syl2anc 408 . . 3 (𝐹 = 𝐺 → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
1211rneqd 4768 . 2 (𝐹 = 𝐺 → ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩))
13 df-seqfrec 10219 . 2 seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
14 df-seqfrec 10219 . 2 seq𝑀( + , 𝐺) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐺‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐺𝑀)⟩)
1512, 13, 143eqtr4g 2197 1 (𝐹 = 𝐺 → seq𝑀( + , 𝐹) = seq𝑀( + , 𝐺))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  Vcvv 2686  ⟨cop 3530  ran crn 4540  ‘cfv 5123  (class class class)co 5774   ∈ cmpo 5776  freccfrec 6287  1c1 7621   + caddc 7623  ℤ≥cuz 9326  seqcseq 10218 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-seqfrec 10219 This theorem is referenced by:  seqeq3d  10226  cbvsum  11129  fsumadd  11175  cbvprod  11327
 Copyright terms: Public domain W3C validator