ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqeq2 GIF version

Theorem seqeq2 10405
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq2 ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))

Proof of Theorem seqeq2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 992 . . . . . . 7 (( + = 𝑄𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ V) → + = 𝑄)
21oveqd 5870 . . . . . 6 (( + = 𝑄𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ V) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦𝑄(𝐹‘(𝑥 + 1))))
32opeq2d 3772 . . . . 5 (( + = 𝑄𝑥 ∈ (ℤ𝑀) ∧ 𝑦 ∈ V) → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩)
43mpoeq3dva 5917 . . . 4 ( + = 𝑄 → (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩))
5 freceq1 6371 . . . 4 ((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
64, 5syl 14 . . 3 ( + = 𝑄 → frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
76rneqd 4840 . 2 ( + = 𝑄 → ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩))
8 df-seqfrec 10402 . 2 seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
9 df-seqfrec 10402 . 2 seq𝑀(𝑄, 𝐹) = ran frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩)
107, 8, 93eqtr4g 2228 1 ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 973   = wceq 1348  wcel 2141  Vcvv 2730  cop 3586  ran crn 4612  cfv 5198  (class class class)co 5853  cmpo 5855  freccfrec 6369  1c1 7775   + caddc 7777  cuz 9487  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-seqfrec 10402
This theorem is referenced by:  seqeq2d  10408  resqrex  10990  nninfdc  12408
  Copyright terms: Public domain W3C validator