![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > seqeq2 | GIF version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq2 | ⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . . . . . 7 ⊢ (( + = 𝑄 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → + = 𝑄) | |
2 | 1 | oveqd 5936 | . . . . . 6 ⊢ (( + = 𝑄 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦𝑄(𝐹‘(𝑥 + 1)))) |
3 | 2 | opeq2d 3812 | . . . . 5 ⊢ (( + = 𝑄 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 = 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉) |
4 | 3 | mpoeq3dva 5983 | . . . 4 ⊢ ( + = 𝑄 → (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉)) |
5 | freceq1 6447 | . . . 4 ⊢ ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ ( + = 𝑄 → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) |
7 | 6 | rneqd 4892 | . 2 ⊢ ( + = 𝑄 → ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) |
8 | df-seqfrec 10522 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
9 | df-seqfrec 10522 | . 2 ⊢ seq𝑀(𝑄, 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
10 | 7, 8, 9 | 3eqtr4g 2251 | 1 ⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3622 ran crn 4661 ‘cfv 5255 (class class class)co 5919 ∈ cmpo 5921 freccfrec 6445 1c1 7875 + caddc 7877 ℤ≥cuz 9595 seqcseq 10521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-recs 6360 df-frec 6446 df-seqfrec 10522 |
This theorem is referenced by: seqeq2d 10528 resqrex 11173 nninfdc 12613 |
Copyright terms: Public domain | W3C validator |