![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > seqeq2 | GIF version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq2 | ⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 997 | . . . . . . 7 ⊢ (( + = 𝑄 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → + = 𝑄) | |
2 | 1 | oveqd 5894 | . . . . . 6 ⊢ (( + = 𝑄 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦𝑄(𝐹‘(𝑥 + 1)))) |
3 | 2 | opeq2d 3787 | . . . . 5 ⊢ (( + = 𝑄 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩ = ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩) |
4 | 3 | mpoeq3dva 5941 | . . . 4 ⊢ ( + = 𝑄 → (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩)) |
5 | freceq1 6395 | . . . 4 ⊢ ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩)) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ ( + = 𝑄 → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩)) |
7 | 6 | rneqd 4858 | . 2 ⊢ ( + = 𝑄 → ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩)) |
8 | df-seqfrec 10448 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) | |
9 | df-seqfrec 10448 | . 2 ⊢ seq𝑀(𝑄, 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹‘𝑀)⟩) | |
10 | 7, 8, 9 | 3eqtr4g 2235 | 1 ⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 978 = wceq 1353 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 ran crn 4629 ‘cfv 5218 (class class class)co 5877 ∈ cmpo 5879 freccfrec 6393 1c1 7814 + caddc 7816 ℤ≥cuz 9530 seqcseq 10447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-cnv 4636 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-recs 6308 df-frec 6394 df-seqfrec 10448 |
This theorem is referenced by: seqeq2d 10454 resqrex 11037 nninfdc 12456 |
Copyright terms: Public domain | W3C validator |