![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > seqeq2 | GIF version |
Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.) |
Ref | Expression |
---|---|
seqeq2 | ⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . . . . . 7 ⊢ (( + = 𝑄 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → + = 𝑄) | |
2 | 1 | oveqd 5913 | . . . . . 6 ⊢ (( + = 𝑄 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → (𝑦 + (𝐹‘(𝑥 + 1))) = (𝑦𝑄(𝐹‘(𝑥 + 1)))) |
3 | 2 | opeq2d 3800 | . . . . 5 ⊢ (( + = 𝑄 ∧ 𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ V) → 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉 = 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉) |
4 | 3 | mpoeq3dva 5960 | . . . 4 ⊢ ( + = 𝑄 → (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉)) |
5 | freceq1 6417 | . . . 4 ⊢ ((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ ( + = 𝑄 → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) |
7 | 6 | rneqd 4874 | . 2 ⊢ ( + = 𝑄 → ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉)) |
8 | df-seqfrec 10477 | . 2 ⊢ seq𝑀( + , 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
9 | df-seqfrec 10477 | . 2 ⊢ seq𝑀(𝑄, 𝐹) = ran frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦𝑄(𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) | |
10 | 7, 8, 9 | 3eqtr4g 2247 | 1 ⊢ ( + = 𝑄 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 Vcvv 2752 〈cop 3610 ran crn 4645 ‘cfv 5235 (class class class)co 5896 ∈ cmpo 5898 freccfrec 6415 1c1 7842 + caddc 7844 ℤ≥cuz 9558 seqcseq 10476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-cnv 4652 df-dm 4654 df-rn 4655 df-res 4656 df-iota 5196 df-fv 5243 df-ov 5899 df-oprab 5900 df-mpo 5901 df-recs 6330 df-frec 6416 df-seqfrec 10477 |
This theorem is referenced by: seqeq2d 10483 resqrex 11067 nninfdc 12504 |
Copyright terms: Public domain | W3C validator |