ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul4d GIF version

Theorem mul4d 8126
Description: Rearrangement of 4 factors. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
muld.1 (𝜑𝐴 ∈ ℂ)
addcomd.2 (𝜑𝐵 ∈ ℂ)
mul12d.3 (𝜑𝐶 ∈ ℂ)
mul4d.4 (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
mul4d (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))

Proof of Theorem mul4d
StepHypRef Expression
1 muld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addcomd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 mul12d.3 . 2 (𝜑𝐶 ∈ ℂ)
4 mul4d.4 . 2 (𝜑𝐷 ∈ ℂ)
5 mul4 8103 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
61, 2, 3, 4, 5syl22anc 1249 1 (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1363  wcel 2158  (class class class)co 5888  cc 7823   · cmul 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-mulcl 7923  ax-mulcom 7926  ax-mulass 7928
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-v 2751  df-un 3145  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-iota 5190  df-fv 5236  df-ov 5891
This theorem is referenced by:  mulreim  8575  remullem  10894  absmul  11092  cosadd  11759  tanaddap  11761  eulerthlema  12244  mul4sqlem  12405  lgsdir  14789  lgsdi  14791
  Copyright terms: Public domain W3C validator