ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp01disjl GIF version

Theorem xp01disjl 6501
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
xp01disjl (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅

Proof of Theorem xp01disjl
StepHypRef Expression
1 1n0 6499 . . 3 1o ≠ ∅
21necomi 2452 . 2 ∅ ≠ 1o
3 disjsn2 3686 . 2 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
4 xpdisj1 5095 . 2 (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅)
52, 3, 4mp2b 8 1 (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wne 2367  cin 3156  c0 3451  {csn 3623   × cxp 4662  1oc1o 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-suc 4407  df-xp 4670  df-rel 4671  df-1o 6483
This theorem is referenced by:  djucomen  7299  djuassen  7300  xpdjuen  7301
  Copyright terms: Public domain W3C validator