ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp01disjl GIF version

Theorem xp01disjl 6543
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint. (Contributed by Jim Kingdon, 11-Jul-2023.)
Assertion
Ref Expression
xp01disjl (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅

Proof of Theorem xp01disjl
StepHypRef Expression
1 1n0 6541 . . 3 1o ≠ ∅
21necomi 2463 . 2 ∅ ≠ 1o
3 disjsn2 3706 . 2 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
4 xpdisj1 5126 . 2 (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅)
52, 3, 4mp2b 8 1 (({∅} × 𝐴) ∩ ({1o} × 𝐶)) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wne 2378  cin 3173  c0 3468  {csn 3643   × cxp 4691  1oc1o 6518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-suc 4436  df-xp 4699  df-rel 4700  df-1o 6525
This theorem is referenced by:  djucomen  7359  djuassen  7360  xpdjuen  7361
  Copyright terms: Public domain W3C validator