ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpress GIF version

Theorem mgpress 13487
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅s 𝐴)
mgpress.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
mgpress ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . . . 5 𝑀 = (mulGrp‘𝑅)
2 eqid 2196 . . . . 5 (.r𝑅) = (.r𝑅)
31, 2mgpvalg 13479 . . . 4 (𝑅𝑉𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩))
43adantr 276 . . 3 ((𝑅𝑉𝐴𝑊) → 𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩))
54oveq1d 5937 . 2 ((𝑅𝑉𝐴𝑊) → (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
61mgpex 13481 . . . 4 (𝑅𝑉𝑀 ∈ V)
7 ressvalsets 12742 . . . 4 ((𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
86, 7sylan 283 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
9 eqid 2196 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
101, 9mgpbasg 13482 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑀))
1110adantr 276 . . . . . 6 ((𝑅𝑉𝐴𝑊) → (Base‘𝑅) = (Base‘𝑀))
1211ineq2d 3364 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝐴 ∩ (Base‘𝑅)) = (𝐴 ∩ (Base‘𝑀)))
1312opeq2d 3815 . . . 4 ((𝑅𝑉𝐴𝑊) → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩)
1413oveq2d 5938 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
158, 14eqtr4d 2232 . 2 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
16 mgpress.1 . . . . 5 𝑆 = (𝑅s 𝐴)
17 ressvalsets 12742 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝑅s 𝐴) = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
1816, 17eqtrid 2241 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
1916, 2ressmulrg 12822 . . . . . . 7 ((𝐴𝑊𝑅𝑉) → (.r𝑅) = (.r𝑆))
2019ancoms 268 . . . . . 6 ((𝑅𝑉𝐴𝑊) → (.r𝑅) = (.r𝑆))
2120eqcomd 2202 . . . . 5 ((𝑅𝑉𝐴𝑊) → (.r𝑆) = (.r𝑅))
2221opeq2d 3815 . . . 4 ((𝑅𝑉𝐴𝑊) → ⟨(+g‘ndx), (.r𝑆)⟩ = ⟨(+g‘ndx), (.r𝑅)⟩)
2318, 22oveq12d 5940 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
24 ressex 12743 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝑅s 𝐴) ∈ V)
2516, 24eqeltrid 2283 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑆 ∈ V)
26 eqid 2196 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
27 eqid 2196 . . . . 5 (.r𝑆) = (.r𝑆)
2826, 27mgpvalg 13479 . . . 4 (𝑆 ∈ V → (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩))
2925, 28syl 14 . . 3 ((𝑅𝑉𝐴𝑊) → (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩))
30 plusgslid 12790 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
3130simpri 113 . . . . 5 (+g‘ndx) ∈ ℕ
3231a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (+g‘ndx) ∈ ℕ)
33 basendxnn 12734 . . . . 5 (Base‘ndx) ∈ ℕ
3433a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (Base‘ndx) ∈ ℕ)
35 simpl 109 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑅𝑉)
36 basendxnplusgndx 12802 . . . . . 6 (Base‘ndx) ≠ (+g‘ndx)
3736necomi 2452 . . . . 5 (+g‘ndx) ≠ (Base‘ndx)
3837a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (+g‘ndx) ≠ (Base‘ndx))
39 mulrslid 12809 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4039slotex 12705 . . . . 5 (𝑅𝑉 → (.r𝑅) ∈ V)
4140adantr 276 . . . 4 ((𝑅𝑉𝐴𝑊) → (.r𝑅) ∈ V)
42 inex1g 4169 . . . . 5 (𝐴𝑊 → (𝐴 ∩ (Base‘𝑅)) ∈ V)
4342adantl 277 . . . 4 ((𝑅𝑉𝐴𝑊) → (𝐴 ∩ (Base‘𝑅)) ∈ V)
4432, 34, 35, 38, 41, 43setscomd 12719 . . 3 ((𝑅𝑉𝐴𝑊) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4523, 29, 443eqtr4d 2239 . 2 ((𝑅𝑉𝐴𝑊) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
465, 15, 453eqtr4d 2239 1 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wne 2367  Vcvv 2763  cin 3156  cop 3625  cfv 5258  (class class class)co 5922  cn 8990  ndxcnx 12675   sSet csts 12676  Slot cslot 12677  Basecbs 12678  s cress 12679  +gcplusg 12755  .rcmulr 12756  mulGrpcmgp 13476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-mgp 13477
This theorem is referenced by:  rdivmuldivd  13700  subrgcrng  13781  subrgsubm  13790  resrhm  13804  resrhm2b  13805  zringmpg  14162
  Copyright terms: Public domain W3C validator