ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpress GIF version

Theorem mgpress 13141
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅 β†Ύs 𝐴)
mgpress.2 𝑀 = (mulGrpβ€˜π‘…)
Assertion
Ref Expression
mgpress ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 β†Ύs 𝐴) = (mulGrpβ€˜π‘†))

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . . . 5 𝑀 = (mulGrpβ€˜π‘…)
2 eqid 2177 . . . . 5 (.rβ€˜π‘…) = (.rβ€˜π‘…)
31, 2mgpvalg 13133 . . . 4 (𝑅 ∈ 𝑉 β†’ 𝑀 = (𝑅 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩))
43adantr 276 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ 𝑀 = (𝑅 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩))
54oveq1d 5890 . 2 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) = ((𝑅 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩) sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩))
61mgpex 13135 . . . 4 (𝑅 ∈ 𝑉 β†’ 𝑀 ∈ V)
7 ressvalsets 12524 . . . 4 ((𝑀 ∈ V ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 β†Ύs 𝐴) = (𝑀 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘€))⟩))
86, 7sylan 283 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 β†Ύs 𝐴) = (𝑀 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘€))⟩))
9 eqid 2177 . . . . . . . 8 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
101, 9mgpbasg 13136 . . . . . . 7 (𝑅 ∈ 𝑉 β†’ (Baseβ€˜π‘…) = (Baseβ€˜π‘€))
1110adantr 276 . . . . . 6 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (Baseβ€˜π‘…) = (Baseβ€˜π‘€))
1211ineq2d 3337 . . . . 5 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝐴 ∩ (Baseβ€˜π‘…)) = (𝐴 ∩ (Baseβ€˜π‘€)))
1312opeq2d 3786 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩ = ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘€))⟩)
1413oveq2d 5891 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) = (𝑀 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘€))⟩))
158, 14eqtr4d 2213 . 2 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 β†Ύs 𝐴) = (𝑀 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩))
16 mgpress.1 . . . . 5 𝑆 = (𝑅 β†Ύs 𝐴)
17 ressvalsets 12524 . . . . 5 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑅 β†Ύs 𝐴) = (𝑅 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩))
1816, 17eqtrid 2222 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ 𝑆 = (𝑅 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩))
1916, 2ressmulrg 12603 . . . . . . 7 ((𝐴 ∈ π‘Š ∧ 𝑅 ∈ 𝑉) β†’ (.rβ€˜π‘…) = (.rβ€˜π‘†))
2019ancoms 268 . . . . . 6 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (.rβ€˜π‘…) = (.rβ€˜π‘†))
2120eqcomd 2183 . . . . 5 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (.rβ€˜π‘†) = (.rβ€˜π‘…))
2221opeq2d 3786 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ ⟨(+gβ€˜ndx), (.rβ€˜π‘†)⟩ = ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩)
2318, 22oveq12d 5893 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑆 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘†)⟩) = ((𝑅 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩))
24 ressex 12525 . . . . 5 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑅 β†Ύs 𝐴) ∈ V)
2516, 24eqeltrid 2264 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ 𝑆 ∈ V)
26 eqid 2177 . . . . 5 (mulGrpβ€˜π‘†) = (mulGrpβ€˜π‘†)
27 eqid 2177 . . . . 5 (.rβ€˜π‘†) = (.rβ€˜π‘†)
2826, 27mgpvalg 13133 . . . 4 (𝑆 ∈ V β†’ (mulGrpβ€˜π‘†) = (𝑆 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘†)⟩))
2925, 28syl 14 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (mulGrpβ€˜π‘†) = (𝑆 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘†)⟩))
30 plusgslid 12571 . . . . . 6 (+g = Slot (+gβ€˜ndx) ∧ (+gβ€˜ndx) ∈ β„•)
3130simpri 113 . . . . 5 (+gβ€˜ndx) ∈ β„•
3231a1i 9 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (+gβ€˜ndx) ∈ β„•)
33 basendxnn 12518 . . . . 5 (Baseβ€˜ndx) ∈ β„•
3433a1i 9 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (Baseβ€˜ndx) ∈ β„•)
35 simpl 109 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ 𝑅 ∈ 𝑉)
36 basendxnplusgndx 12583 . . . . . 6 (Baseβ€˜ndx) β‰  (+gβ€˜ndx)
3736necomi 2432 . . . . 5 (+gβ€˜ndx) β‰  (Baseβ€˜ndx)
3837a1i 9 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (+gβ€˜ndx) β‰  (Baseβ€˜ndx))
39 mulrslid 12590 . . . . . 6 (.r = Slot (.rβ€˜ndx) ∧ (.rβ€˜ndx) ∈ β„•)
4039slotex 12489 . . . . 5 (𝑅 ∈ 𝑉 β†’ (.rβ€˜π‘…) ∈ V)
4140adantr 276 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (.rβ€˜π‘…) ∈ V)
42 inex1g 4140 . . . . 5 (𝐴 ∈ π‘Š β†’ (𝐴 ∩ (Baseβ€˜π‘…)) ∈ V)
4342adantl 277 . . . 4 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝐴 ∩ (Baseβ€˜π‘…)) ∈ V)
4432, 34, 35, 38, 41, 43setscomd 12503 . . 3 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ ((𝑅 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩) sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) = ((𝑅 sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩) sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩))
4523, 29, 443eqtr4d 2220 . 2 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (mulGrpβ€˜π‘†) = ((𝑅 sSet ⟨(+gβ€˜ndx), (.rβ€˜π‘…)⟩) sSet ⟨(Baseβ€˜ndx), (𝐴 ∩ (Baseβ€˜π‘…))⟩))
465, 15, 453eqtr4d 2220 1 ((𝑅 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝑀 β†Ύs 𝐴) = (mulGrpβ€˜π‘†))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148   β‰  wne 2347  Vcvv 2738   ∩ cin 3129  βŸ¨cop 3596  β€˜cfv 5217  (class class class)co 5875  β„•cn 8919  ndxcnx 12459   sSet csts 12460  Slot cslot 12461  Basecbs 12462   β†Ύs cress 12463  +gcplusg 12536  .rcmulr 12537  mulGrpcmgp 13130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-iress 12470  df-plusg 12549  df-mulr 12550  df-mgp 13131
This theorem is referenced by:  rdivmuldivd  13313  subrgcrng  13346  subrgsubm  13355  zringmpg  13499
  Copyright terms: Public domain W3C validator