ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpress GIF version

Theorem mgpress 13726
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅s 𝐴)
mgpress.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
mgpress ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . . . 5 𝑀 = (mulGrp‘𝑅)
2 eqid 2205 . . . . 5 (.r𝑅) = (.r𝑅)
31, 2mgpvalg 13718 . . . 4 (𝑅𝑉𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩))
43adantr 276 . . 3 ((𝑅𝑉𝐴𝑊) → 𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩))
54oveq1d 5961 . 2 ((𝑅𝑉𝐴𝑊) → (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
61mgpex 13720 . . . 4 (𝑅𝑉𝑀 ∈ V)
7 ressvalsets 12929 . . . 4 ((𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
86, 7sylan 283 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
9 eqid 2205 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
101, 9mgpbasg 13721 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑀))
1110adantr 276 . . . . . 6 ((𝑅𝑉𝐴𝑊) → (Base‘𝑅) = (Base‘𝑀))
1211ineq2d 3374 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝐴 ∩ (Base‘𝑅)) = (𝐴 ∩ (Base‘𝑀)))
1312opeq2d 3826 . . . 4 ((𝑅𝑉𝐴𝑊) → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩)
1413oveq2d 5962 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
158, 14eqtr4d 2241 . 2 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
16 mgpress.1 . . . . 5 𝑆 = (𝑅s 𝐴)
17 ressvalsets 12929 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝑅s 𝐴) = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
1816, 17eqtrid 2250 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
1916, 2ressmulrg 13010 . . . . . . 7 ((𝐴𝑊𝑅𝑉) → (.r𝑅) = (.r𝑆))
2019ancoms 268 . . . . . 6 ((𝑅𝑉𝐴𝑊) → (.r𝑅) = (.r𝑆))
2120eqcomd 2211 . . . . 5 ((𝑅𝑉𝐴𝑊) → (.r𝑆) = (.r𝑅))
2221opeq2d 3826 . . . 4 ((𝑅𝑉𝐴𝑊) → ⟨(+g‘ndx), (.r𝑆)⟩ = ⟨(+g‘ndx), (.r𝑅)⟩)
2318, 22oveq12d 5964 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
24 ressex 12930 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝑅s 𝐴) ∈ V)
2516, 24eqeltrid 2292 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑆 ∈ V)
26 eqid 2205 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
27 eqid 2205 . . . . 5 (.r𝑆) = (.r𝑆)
2826, 27mgpvalg 13718 . . . 4 (𝑆 ∈ V → (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩))
2925, 28syl 14 . . 3 ((𝑅𝑉𝐴𝑊) → (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩))
30 plusgslid 12977 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
3130simpri 113 . . . . 5 (+g‘ndx) ∈ ℕ
3231a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (+g‘ndx) ∈ ℕ)
33 basendxnn 12921 . . . . 5 (Base‘ndx) ∈ ℕ
3433a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (Base‘ndx) ∈ ℕ)
35 simpl 109 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑅𝑉)
36 basendxnplusgndx 12990 . . . . . 6 (Base‘ndx) ≠ (+g‘ndx)
3736necomi 2461 . . . . 5 (+g‘ndx) ≠ (Base‘ndx)
3837a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (+g‘ndx) ≠ (Base‘ndx))
39 mulrslid 12997 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4039slotex 12892 . . . . 5 (𝑅𝑉 → (.r𝑅) ∈ V)
4140adantr 276 . . . 4 ((𝑅𝑉𝐴𝑊) → (.r𝑅) ∈ V)
42 inex1g 4181 . . . . 5 (𝐴𝑊 → (𝐴 ∩ (Base‘𝑅)) ∈ V)
4342adantl 277 . . . 4 ((𝑅𝑉𝐴𝑊) → (𝐴 ∩ (Base‘𝑅)) ∈ V)
4432, 34, 35, 38, 41, 43setscomd 12906 . . 3 ((𝑅𝑉𝐴𝑊) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4523, 29, 443eqtr4d 2248 . 2 ((𝑅𝑉𝐴𝑊) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
465, 15, 453eqtr4d 2248 1 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wne 2376  Vcvv 2772  cin 3165  cop 3636  cfv 5272  (class class class)co 5946  cn 9038  ndxcnx 12862   sSet csts 12863  Slot cslot 12864  Basecbs 12865  s cress 12866  +gcplusg 12942  .rcmulr 12943  mulGrpcmgp 13715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-mulr 12956  df-mgp 13716
This theorem is referenced by:  rdivmuldivd  13939  subrgcrng  14020  subrgsubm  14029  resrhm  14043  resrhm2b  14044  zringmpg  14401
  Copyright terms: Public domain W3C validator