ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpress GIF version

Theorem mgpress 13146
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅s 𝐴)
mgpress.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
mgpress ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . . . 5 𝑀 = (mulGrp‘𝑅)
2 eqid 2177 . . . . 5 (.r𝑅) = (.r𝑅)
31, 2mgpvalg 13138 . . . 4 (𝑅𝑉𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩))
43adantr 276 . . 3 ((𝑅𝑉𝐴𝑊) → 𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩))
54oveq1d 5892 . 2 ((𝑅𝑉𝐴𝑊) → (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
61mgpex 13140 . . . 4 (𝑅𝑉𝑀 ∈ V)
7 ressvalsets 12526 . . . 4 ((𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
86, 7sylan 283 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
9 eqid 2177 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
101, 9mgpbasg 13141 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑀))
1110adantr 276 . . . . . 6 ((𝑅𝑉𝐴𝑊) → (Base‘𝑅) = (Base‘𝑀))
1211ineq2d 3338 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝐴 ∩ (Base‘𝑅)) = (𝐴 ∩ (Base‘𝑀)))
1312opeq2d 3787 . . . 4 ((𝑅𝑉𝐴𝑊) → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩)
1413oveq2d 5893 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
158, 14eqtr4d 2213 . 2 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
16 mgpress.1 . . . . 5 𝑆 = (𝑅s 𝐴)
17 ressvalsets 12526 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝑅s 𝐴) = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
1816, 17eqtrid 2222 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
1916, 2ressmulrg 12605 . . . . . . 7 ((𝐴𝑊𝑅𝑉) → (.r𝑅) = (.r𝑆))
2019ancoms 268 . . . . . 6 ((𝑅𝑉𝐴𝑊) → (.r𝑅) = (.r𝑆))
2120eqcomd 2183 . . . . 5 ((𝑅𝑉𝐴𝑊) → (.r𝑆) = (.r𝑅))
2221opeq2d 3787 . . . 4 ((𝑅𝑉𝐴𝑊) → ⟨(+g‘ndx), (.r𝑆)⟩ = ⟨(+g‘ndx), (.r𝑅)⟩)
2318, 22oveq12d 5895 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
24 ressex 12527 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝑅s 𝐴) ∈ V)
2516, 24eqeltrid 2264 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑆 ∈ V)
26 eqid 2177 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
27 eqid 2177 . . . . 5 (.r𝑆) = (.r𝑆)
2826, 27mgpvalg 13138 . . . 4 (𝑆 ∈ V → (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩))
2925, 28syl 14 . . 3 ((𝑅𝑉𝐴𝑊) → (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩))
30 plusgslid 12573 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
3130simpri 113 . . . . 5 (+g‘ndx) ∈ ℕ
3231a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (+g‘ndx) ∈ ℕ)
33 basendxnn 12520 . . . . 5 (Base‘ndx) ∈ ℕ
3433a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (Base‘ndx) ∈ ℕ)
35 simpl 109 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑅𝑉)
36 basendxnplusgndx 12585 . . . . . 6 (Base‘ndx) ≠ (+g‘ndx)
3736necomi 2432 . . . . 5 (+g‘ndx) ≠ (Base‘ndx)
3837a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (+g‘ndx) ≠ (Base‘ndx))
39 mulrslid 12592 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4039slotex 12491 . . . . 5 (𝑅𝑉 → (.r𝑅) ∈ V)
4140adantr 276 . . . 4 ((𝑅𝑉𝐴𝑊) → (.r𝑅) ∈ V)
42 inex1g 4141 . . . . 5 (𝐴𝑊 → (𝐴 ∩ (Base‘𝑅)) ∈ V)
4342adantl 277 . . . 4 ((𝑅𝑉𝐴𝑊) → (𝐴 ∩ (Base‘𝑅)) ∈ V)
4432, 34, 35, 38, 41, 43setscomd 12505 . . 3 ((𝑅𝑉𝐴𝑊) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4523, 29, 443eqtr4d 2220 . 2 ((𝑅𝑉𝐴𝑊) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
465, 15, 453eqtr4d 2220 1 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wne 2347  Vcvv 2739  cin 3130  cop 3597  cfv 5218  (class class class)co 5877  cn 8921  ndxcnx 12461   sSet csts 12462  Slot cslot 12463  Basecbs 12464  s cress 12465  +gcplusg 12538  .rcmulr 12539  mulGrpcmgp 13135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-mgp 13136
This theorem is referenced by:  rdivmuldivd  13318  subrgcrng  13351  subrgsubm  13360  zringmpg  13581
  Copyright terms: Public domain W3C validator