ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpress GIF version

Theorem mgpress 13808
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅s 𝐴)
mgpress.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
mgpress ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . . . 5 𝑀 = (mulGrp‘𝑅)
2 eqid 2207 . . . . 5 (.r𝑅) = (.r𝑅)
31, 2mgpvalg 13800 . . . 4 (𝑅𝑉𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩))
43adantr 276 . . 3 ((𝑅𝑉𝐴𝑊) → 𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩))
54oveq1d 5982 . 2 ((𝑅𝑉𝐴𝑊) → (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
61mgpex 13802 . . . 4 (𝑅𝑉𝑀 ∈ V)
7 ressvalsets 13011 . . . 4 ((𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
86, 7sylan 283 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
9 eqid 2207 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
101, 9mgpbasg 13803 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑀))
1110adantr 276 . . . . . 6 ((𝑅𝑉𝐴𝑊) → (Base‘𝑅) = (Base‘𝑀))
1211ineq2d 3382 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝐴 ∩ (Base‘𝑅)) = (𝐴 ∩ (Base‘𝑀)))
1312opeq2d 3840 . . . 4 ((𝑅𝑉𝐴𝑊) → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩)
1413oveq2d 5983 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
158, 14eqtr4d 2243 . 2 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
16 mgpress.1 . . . . 5 𝑆 = (𝑅s 𝐴)
17 ressvalsets 13011 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝑅s 𝐴) = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
1816, 17eqtrid 2252 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
1916, 2ressmulrg 13092 . . . . . . 7 ((𝐴𝑊𝑅𝑉) → (.r𝑅) = (.r𝑆))
2019ancoms 268 . . . . . 6 ((𝑅𝑉𝐴𝑊) → (.r𝑅) = (.r𝑆))
2120eqcomd 2213 . . . . 5 ((𝑅𝑉𝐴𝑊) → (.r𝑆) = (.r𝑅))
2221opeq2d 3840 . . . 4 ((𝑅𝑉𝐴𝑊) → ⟨(+g‘ndx), (.r𝑆)⟩ = ⟨(+g‘ndx), (.r𝑅)⟩)
2318, 22oveq12d 5985 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
24 ressex 13012 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝑅s 𝐴) ∈ V)
2516, 24eqeltrid 2294 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑆 ∈ V)
26 eqid 2207 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
27 eqid 2207 . . . . 5 (.r𝑆) = (.r𝑆)
2826, 27mgpvalg 13800 . . . 4 (𝑆 ∈ V → (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩))
2925, 28syl 14 . . 3 ((𝑅𝑉𝐴𝑊) → (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩))
30 plusgslid 13059 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
3130simpri 113 . . . . 5 (+g‘ndx) ∈ ℕ
3231a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (+g‘ndx) ∈ ℕ)
33 basendxnn 13003 . . . . 5 (Base‘ndx) ∈ ℕ
3433a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (Base‘ndx) ∈ ℕ)
35 simpl 109 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑅𝑉)
36 basendxnplusgndx 13072 . . . . . 6 (Base‘ndx) ≠ (+g‘ndx)
3736necomi 2463 . . . . 5 (+g‘ndx) ≠ (Base‘ndx)
3837a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (+g‘ndx) ≠ (Base‘ndx))
39 mulrslid 13079 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4039slotex 12974 . . . . 5 (𝑅𝑉 → (.r𝑅) ∈ V)
4140adantr 276 . . . 4 ((𝑅𝑉𝐴𝑊) → (.r𝑅) ∈ V)
42 inex1g 4196 . . . . 5 (𝐴𝑊 → (𝐴 ∩ (Base‘𝑅)) ∈ V)
4342adantl 277 . . . 4 ((𝑅𝑉𝐴𝑊) → (𝐴 ∩ (Base‘𝑅)) ∈ V)
4432, 34, 35, 38, 41, 43setscomd 12988 . . 3 ((𝑅𝑉𝐴𝑊) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4523, 29, 443eqtr4d 2250 . 2 ((𝑅𝑉𝐴𝑊) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
465, 15, 453eqtr4d 2250 1 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  wne 2378  Vcvv 2776  cin 3173  cop 3646  cfv 5290  (class class class)co 5967  cn 9071  ndxcnx 12944   sSet csts 12945  Slot cslot 12946  Basecbs 12947  s cress 12948  +gcplusg 13024  .rcmulr 13025  mulGrpcmgp 13797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-mgp 13798
This theorem is referenced by:  rdivmuldivd  14021  subrgcrng  14102  subrgsubm  14111  resrhm  14125  resrhm2b  14126  zringmpg  14483
  Copyright terms: Public domain W3C validator