ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpress GIF version

Theorem mgpress 13427
Description: Subgroup commutes with the multiplicative group operator. (Contributed by Mario Carneiro, 10-Jan-2015.) (Proof shortened by AV, 18-Oct-2024.)
Hypotheses
Ref Expression
mgpress.1 𝑆 = (𝑅s 𝐴)
mgpress.2 𝑀 = (mulGrp‘𝑅)
Assertion
Ref Expression
mgpress ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))

Proof of Theorem mgpress
StepHypRef Expression
1 mgpress.2 . . . . 5 𝑀 = (mulGrp‘𝑅)
2 eqid 2193 . . . . 5 (.r𝑅) = (.r𝑅)
31, 2mgpvalg 13419 . . . 4 (𝑅𝑉𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩))
43adantr 276 . . 3 ((𝑅𝑉𝐴𝑊) → 𝑀 = (𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩))
54oveq1d 5933 . 2 ((𝑅𝑉𝐴𝑊) → (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
61mgpex 13421 . . . 4 (𝑅𝑉𝑀 ∈ V)
7 ressvalsets 12682 . . . 4 ((𝑀 ∈ V ∧ 𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
86, 7sylan 283 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
9 eqid 2193 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
101, 9mgpbasg 13422 . . . . . . 7 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑀))
1110adantr 276 . . . . . 6 ((𝑅𝑉𝐴𝑊) → (Base‘𝑅) = (Base‘𝑀))
1211ineq2d 3360 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝐴 ∩ (Base‘𝑅)) = (𝐴 ∩ (Base‘𝑀)))
1312opeq2d 3811 . . . 4 ((𝑅𝑉𝐴𝑊) → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩ = ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩)
1413oveq2d 5934 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑀))⟩))
158, 14eqtr4d 2229 . 2 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (𝑀 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
16 mgpress.1 . . . . 5 𝑆 = (𝑅s 𝐴)
17 ressvalsets 12682 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝑅s 𝐴) = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
1816, 17eqtrid 2238 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑆 = (𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
1916, 2ressmulrg 12762 . . . . . . 7 ((𝐴𝑊𝑅𝑉) → (.r𝑅) = (.r𝑆))
2019ancoms 268 . . . . . 6 ((𝑅𝑉𝐴𝑊) → (.r𝑅) = (.r𝑆))
2120eqcomd 2199 . . . . 5 ((𝑅𝑉𝐴𝑊) → (.r𝑆) = (.r𝑅))
2221opeq2d 3811 . . . 4 ((𝑅𝑉𝐴𝑊) → ⟨(+g‘ndx), (.r𝑆)⟩ = ⟨(+g‘ndx), (.r𝑅)⟩)
2318, 22oveq12d 5936 . . 3 ((𝑅𝑉𝐴𝑊) → (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
24 ressex 12683 . . . . 5 ((𝑅𝑉𝐴𝑊) → (𝑅s 𝐴) ∈ V)
2516, 24eqeltrid 2280 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑆 ∈ V)
26 eqid 2193 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
27 eqid 2193 . . . . 5 (.r𝑆) = (.r𝑆)
2826, 27mgpvalg 13419 . . . 4 (𝑆 ∈ V → (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩))
2925, 28syl 14 . . 3 ((𝑅𝑉𝐴𝑊) → (mulGrp‘𝑆) = (𝑆 sSet ⟨(+g‘ndx), (.r𝑆)⟩))
30 plusgslid 12730 . . . . . 6 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
3130simpri 113 . . . . 5 (+g‘ndx) ∈ ℕ
3231a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (+g‘ndx) ∈ ℕ)
33 basendxnn 12674 . . . . 5 (Base‘ndx) ∈ ℕ
3433a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (Base‘ndx) ∈ ℕ)
35 simpl 109 . . . 4 ((𝑅𝑉𝐴𝑊) → 𝑅𝑉)
36 basendxnplusgndx 12742 . . . . . 6 (Base‘ndx) ≠ (+g‘ndx)
3736necomi 2449 . . . . 5 (+g‘ndx) ≠ (Base‘ndx)
3837a1i 9 . . . 4 ((𝑅𝑉𝐴𝑊) → (+g‘ndx) ≠ (Base‘ndx))
39 mulrslid 12749 . . . . . 6 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4039slotex 12645 . . . . 5 (𝑅𝑉 → (.r𝑅) ∈ V)
4140adantr 276 . . . 4 ((𝑅𝑉𝐴𝑊) → (.r𝑅) ∈ V)
42 inex1g 4165 . . . . 5 (𝐴𝑊 → (𝐴 ∩ (Base‘𝑅)) ∈ V)
4342adantl 277 . . . 4 ((𝑅𝑉𝐴𝑊) → (𝐴 ∩ (Base‘𝑅)) ∈ V)
4432, 34, 35, 38, 41, 43setscomd 12659 . . 3 ((𝑅𝑉𝐴𝑊) → ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) = ((𝑅 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩) sSet ⟨(+g‘ndx), (.r𝑅)⟩))
4523, 29, 443eqtr4d 2236 . 2 ((𝑅𝑉𝐴𝑊) → (mulGrp‘𝑆) = ((𝑅 sSet ⟨(+g‘ndx), (.r𝑅)⟩) sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑅))⟩))
465, 15, 453eqtr4d 2236 1 ((𝑅𝑉𝐴𝑊) → (𝑀s 𝐴) = (mulGrp‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wne 2364  Vcvv 2760  cin 3152  cop 3621  cfv 5254  (class class class)co 5918  cn 8982  ndxcnx 12615   sSet csts 12616  Slot cslot 12617  Basecbs 12618  s cress 12619  +gcplusg 12695  .rcmulr 12696  mulGrpcmgp 13416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-mgp 13417
This theorem is referenced by:  rdivmuldivd  13640  subrgcrng  13721  subrgsubm  13730  resrhm  13744  resrhm2b  13745  zringmpg  14094
  Copyright terms: Public domain W3C validator