Step | Hyp | Ref
| Expression |
1 | | mgpress.2 |
. . . . 5
β’ π = (mulGrpβπ
) |
2 | | eqid 2177 |
. . . . 5
β’
(.rβπ
) = (.rβπ
) |
3 | 1, 2 | mgpvalg 13133 |
. . . 4
β’ (π
β π β π = (π
sSet β¨(+gβndx),
(.rβπ
)β©)) |
4 | 3 | adantr 276 |
. . 3
β’ ((π
β π β§ π΄ β π) β π = (π
sSet β¨(+gβndx),
(.rβπ
)β©)) |
5 | 4 | oveq1d 5890 |
. 2
β’ ((π
β π β§ π΄ β π) β (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ
))β©) = ((π
sSet β¨(+gβndx),
(.rβπ
)β©) sSet β¨(Baseβndx), (π΄ β© (Baseβπ
))β©)) |
6 | 1 | mgpex 13135 |
. . . 4
β’ (π
β π β π β V) |
7 | | ressvalsets 12524 |
. . . 4
β’ ((π β V β§ π΄ β π) β (π βΎs π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
8 | 6, 7 | sylan 283 |
. . 3
β’ ((π
β π β§ π΄ β π) β (π βΎs π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
9 | | eqid 2177 |
. . . . . . . 8
β’
(Baseβπ
) =
(Baseβπ
) |
10 | 1, 9 | mgpbasg 13136 |
. . . . . . 7
β’ (π
β π β (Baseβπ
) = (Baseβπ)) |
11 | 10 | adantr 276 |
. . . . . 6
β’ ((π
β π β§ π΄ β π) β (Baseβπ
) = (Baseβπ)) |
12 | 11 | ineq2d 3337 |
. . . . 5
β’ ((π
β π β§ π΄ β π) β (π΄ β© (Baseβπ
)) = (π΄ β© (Baseβπ))) |
13 | 12 | opeq2d 3786 |
. . . 4
β’ ((π
β π β§ π΄ β π) β β¨(Baseβndx), (π΄ β© (Baseβπ
))β© =
β¨(Baseβndx), (π΄
β© (Baseβπ))β©) |
14 | 13 | oveq2d 5891 |
. . 3
β’ ((π
β π β§ π΄ β π) β (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ
))β©) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ))β©)) |
15 | 8, 14 | eqtr4d 2213 |
. 2
β’ ((π
β π β§ π΄ β π) β (π βΎs π΄) = (π sSet β¨(Baseβndx), (π΄ β© (Baseβπ
))β©)) |
16 | | mgpress.1 |
. . . . 5
β’ π = (π
βΎs π΄) |
17 | | ressvalsets 12524 |
. . . . 5
β’ ((π
β π β§ π΄ β π) β (π
βΎs π΄) = (π
sSet β¨(Baseβndx), (π΄ β© (Baseβπ
))β©)) |
18 | 16, 17 | eqtrid 2222 |
. . . 4
β’ ((π
β π β§ π΄ β π) β π = (π
sSet β¨(Baseβndx), (π΄ β© (Baseβπ
))β©)) |
19 | 16, 2 | ressmulrg 12603 |
. . . . . . 7
β’ ((π΄ β π β§ π
β π) β (.rβπ
) = (.rβπ)) |
20 | 19 | ancoms 268 |
. . . . . 6
β’ ((π
β π β§ π΄ β π) β (.rβπ
) = (.rβπ)) |
21 | 20 | eqcomd 2183 |
. . . . 5
β’ ((π
β π β§ π΄ β π) β (.rβπ) = (.rβπ
)) |
22 | 21 | opeq2d 3786 |
. . . 4
β’ ((π
β π β§ π΄ β π) β β¨(+gβndx),
(.rβπ)β© = β¨(+gβndx),
(.rβπ
)β©) |
23 | 18, 22 | oveq12d 5893 |
. . 3
β’ ((π
β π β§ π΄ β π) β (π sSet β¨(+gβndx),
(.rβπ)β©) = ((π
sSet β¨(Baseβndx), (π΄ β© (Baseβπ
))β©) sSet
β¨(+gβndx), (.rβπ
)β©)) |
24 | | ressex 12525 |
. . . . 5
β’ ((π
β π β§ π΄ β π) β (π
βΎs π΄) β V) |
25 | 16, 24 | eqeltrid 2264 |
. . . 4
β’ ((π
β π β§ π΄ β π) β π β V) |
26 | | eqid 2177 |
. . . . 5
β’
(mulGrpβπ) =
(mulGrpβπ) |
27 | | eqid 2177 |
. . . . 5
β’
(.rβπ) = (.rβπ) |
28 | 26, 27 | mgpvalg 13133 |
. . . 4
β’ (π β V β
(mulGrpβπ) = (π sSet
β¨(+gβndx), (.rβπ)β©)) |
29 | 25, 28 | syl 14 |
. . 3
β’ ((π
β π β§ π΄ β π) β (mulGrpβπ) = (π sSet β¨(+gβndx),
(.rβπ)β©)) |
30 | | plusgslid 12571 |
. . . . . 6
β’
(+g = Slot (+gβndx) β§
(+gβndx) β β) |
31 | 30 | simpri 113 |
. . . . 5
β’
(+gβndx) β β |
32 | 31 | a1i 9 |
. . . 4
β’ ((π
β π β§ π΄ β π) β (+gβndx) β
β) |
33 | | basendxnn 12518 |
. . . . 5
β’
(Baseβndx) β β |
34 | 33 | a1i 9 |
. . . 4
β’ ((π
β π β§ π΄ β π) β (Baseβndx) β
β) |
35 | | simpl 109 |
. . . 4
β’ ((π
β π β§ π΄ β π) β π
β π) |
36 | | basendxnplusgndx 12583 |
. . . . . 6
β’
(Baseβndx) β (+gβndx) |
37 | 36 | necomi 2432 |
. . . . 5
β’
(+gβndx) β (Baseβndx) |
38 | 37 | a1i 9 |
. . . 4
β’ ((π
β π β§ π΄ β π) β (+gβndx) β
(Baseβndx)) |
39 | | mulrslid 12590 |
. . . . . 6
β’
(.r = Slot (.rβndx) β§
(.rβndx) β β) |
40 | 39 | slotex 12489 |
. . . . 5
β’ (π
β π β (.rβπ
) β V) |
41 | 40 | adantr 276 |
. . . 4
β’ ((π
β π β§ π΄ β π) β (.rβπ
) β V) |
42 | | inex1g 4140 |
. . . . 5
β’ (π΄ β π β (π΄ β© (Baseβπ
)) β V) |
43 | 42 | adantl 277 |
. . . 4
β’ ((π
β π β§ π΄ β π) β (π΄ β© (Baseβπ
)) β V) |
44 | 32, 34, 35, 38, 41, 43 | setscomd 12503 |
. . 3
β’ ((π
β π β§ π΄ β π) β ((π
sSet β¨(+gβndx),
(.rβπ
)β©) sSet β¨(Baseβndx), (π΄ β© (Baseβπ
))β©) = ((π
sSet β¨(Baseβndx), (π΄ β© (Baseβπ
))β©) sSet
β¨(+gβndx), (.rβπ
)β©)) |
45 | 23, 29, 44 | 3eqtr4d 2220 |
. 2
β’ ((π
β π β§ π΄ β π) β (mulGrpβπ) = ((π
sSet β¨(+gβndx),
(.rβπ
)β©) sSet β¨(Baseβndx), (π΄ β© (Baseβπ
))β©)) |
46 | 5, 15, 45 | 3eqtr4d 2220 |
1
β’ ((π
β π β§ π΄ β π) β (π βΎs π΄) = (mulGrpβπ)) |