![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvpr0o | GIF version |
Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.) |
Ref | Expression |
---|---|
fvpr0o | ⊢ (𝐴 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 4605 | . 2 ⊢ ∅ ∈ ω | |
2 | 1n0 6447 | . . 3 ⊢ 1o ≠ ∅ | |
3 | 2 | necomi 2442 | . 2 ⊢ ∅ ≠ 1o |
4 | fvpr1g 5735 | . 2 ⊢ ((∅ ∈ ω ∧ 𝐴 ∈ 𝑉 ∧ ∅ ≠ 1o) → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) | |
5 | 1, 3, 4 | mp3an13 1338 | 1 ⊢ (𝐴 ∈ 𝑉 → ({〈∅, 𝐴〉, 〈1o, 𝐵〉}‘∅) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 ∅c0 3434 {cpr 3605 〈cop 3607 ωcom 4601 ‘cfv 5228 1oc1o 6424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-id 4305 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-res 4650 df-iota 5190 df-fun 5230 df-fv 5236 df-1o 6431 |
This theorem is referenced by: fvprif 12781 xpsfeq 12783 xpsfrnel2 12784 xpsff1o 12787 |
Copyright terms: Public domain | W3C validator |