![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressmulrg | GIF version |
Description: .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
ressmulr.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
ressmulr.2 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ressmulrg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · = (.r‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmulr.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | ressmulr.2 | . 2 ⊢ · = (.r‘𝑅) | |
3 | mulrslid 12749 | . 2 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
4 | basendxnmulrndx 12751 | . . 3 ⊢ (Base‘ndx) ≠ (.r‘ndx) | |
5 | 4 | necomi 2449 | . 2 ⊢ (.r‘ndx) ≠ (Base‘ndx) |
6 | simpr 110 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ 𝑊) | |
7 | simpl 109 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
8 | 1, 2, 3, 5, 6, 7 | resseqnbasd 12691 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · = (.r‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 ndxcnx 12615 Basecbs 12618 ↾s cress 12619 .rcmulr 12696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-mulr 12709 |
This theorem is referenced by: mgpress 13427 rngressid 13450 ringressid 13559 rdivmuldivd 13640 subrngmcl 13705 issubrng2 13706 subrngpropd 13712 subrg1 13727 subrgmcl 13729 subrgdvds 13731 subrguss 13732 subrginv 13733 subrgdv 13734 subrgunit 13735 subrgugrp 13736 issubrg2 13737 subrgpropd 13749 sralmod 13946 rnglidlmmgm 13992 rnglidlmsgrp 13993 rnglidlrng 13994 zringmulr 14087 |
Copyright terms: Public domain | W3C validator |