| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressmulrg | GIF version | ||
| Description: .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressmulr.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| ressmulr.2 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ressmulrg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · = (.r‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulr.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | ressmulr.2 | . 2 ⊢ · = (.r‘𝑅) | |
| 3 | mulrslid 13079 | . 2 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 4 | basendxnmulrndx 13081 | . . 3 ⊢ (Base‘ndx) ≠ (.r‘ndx) | |
| 5 | 4 | necomi 2463 | . 2 ⊢ (.r‘ndx) ≠ (Base‘ndx) |
| 6 | simpr 110 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ 𝑊) | |
| 7 | simpl 109 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 8 | 1, 2, 3, 5, 6, 7 | resseqnbasd 13020 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · = (.r‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ‘cfv 5290 (class class class)co 5967 ndxcnx 12944 Basecbs 12947 ↾s cress 12948 .rcmulr 13025 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-3 9131 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-mulr 13038 |
| This theorem is referenced by: mgpress 13808 rngressid 13831 ringressid 13940 rdivmuldivd 14021 subrngmcl 14086 issubrng2 14087 subrngpropd 14093 subrg1 14108 subrgmcl 14110 subrgdvds 14112 subrguss 14113 subrginv 14114 subrgdv 14115 subrgunit 14116 subrgugrp 14117 issubrg2 14118 subrgpropd 14130 sralmod 14327 rnglidlmmgm 14373 rnglidlmsgrp 14374 rnglidlrng 14375 zringmulr 14476 |
| Copyright terms: Public domain | W3C validator |