ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressmulrg GIF version

Theorem ressmulrg 12948
Description: .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
ressmulr.1 𝑆 = (𝑅s 𝐴)
ressmulr.2 · = (.r𝑅)
Assertion
Ref Expression
ressmulrg ((𝐴𝑉𝑅𝑊) → · = (.r𝑆))

Proof of Theorem ressmulrg
StepHypRef Expression
1 ressmulr.1 . 2 𝑆 = (𝑅s 𝐴)
2 ressmulr.2 . 2 · = (.r𝑅)
3 mulrslid 12935 . 2 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
4 basendxnmulrndx 12937 . . 3 (Base‘ndx) ≠ (.r‘ndx)
54necomi 2460 . 2 (.r‘ndx) ≠ (Base‘ndx)
6 simpr 110 . 2 ((𝐴𝑉𝑅𝑊) → 𝑅𝑊)
7 simpl 109 . 2 ((𝐴𝑉𝑅𝑊) → 𝐴𝑉)
81, 2, 3, 5, 6, 7resseqnbasd 12876 1 ((𝐴𝑉𝑅𝑊) → · = (.r𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  cfv 5270  (class class class)co 5943  ndxcnx 12800  Basecbs 12803  s cress 12804  .rcmulr 12881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-sets 12810  df-iress 12811  df-mulr 12894
This theorem is referenced by:  mgpress  13664  rngressid  13687  ringressid  13796  rdivmuldivd  13877  subrngmcl  13942  issubrng2  13943  subrngpropd  13949  subrg1  13964  subrgmcl  13966  subrgdvds  13968  subrguss  13969  subrginv  13970  subrgdv  13971  subrgunit  13972  subrgugrp  13973  issubrg2  13974  subrgpropd  13986  sralmod  14183  rnglidlmmgm  14229  rnglidlmsgrp  14230  rnglidlrng  14231  zringmulr  14332
  Copyright terms: Public domain W3C validator