| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressmulrg | GIF version | ||
| Description: .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressmulr.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| ressmulr.2 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ressmulrg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · = (.r‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulr.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | ressmulr.2 | . 2 ⊢ · = (.r‘𝑅) | |
| 3 | mulrslid 13160 | . 2 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 4 | basendxnmulrndx 13162 | . . 3 ⊢ (Base‘ndx) ≠ (.r‘ndx) | |
| 5 | 4 | necomi 2485 | . 2 ⊢ (.r‘ndx) ≠ (Base‘ndx) |
| 6 | simpr 110 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝑅 ∈ 𝑊) | |
| 7 | simpl 109 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → 𝐴 ∈ 𝑉) | |
| 8 | 1, 2, 3, 5, 6, 7 | resseqnbasd 13101 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → · = (.r‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 ndxcnx 13024 Basecbs 13027 ↾s cress 13028 .rcmulr 13106 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-mulr 13119 |
| This theorem is referenced by: mgpress 13889 rngressid 13912 ringressid 14021 rdivmuldivd 14102 subrngmcl 14167 issubrng2 14168 subrngpropd 14174 subrg1 14189 subrgmcl 14191 subrgdvds 14193 subrguss 14194 subrginv 14195 subrgdv 14196 subrgunit 14197 subrgugrp 14198 issubrg2 14199 subrgpropd 14211 sralmod 14408 rnglidlmmgm 14454 rnglidlmsgrp 14455 rnglidlrng 14456 zringmulr 14557 |
| Copyright terms: Public domain | W3C validator |