ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltneii GIF version

Theorem ltneii 8151
Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
ltneii.2 𝐴 < 𝐵
Assertion
Ref Expression
ltneii 𝐴𝐵

Proof of Theorem ltneii
StepHypRef Expression
1 lt.1 . . 3 𝐴 ∈ ℝ
2 ltneii.2 . . 3 𝐴 < 𝐵
31, 2gtneii 8150 . 2 𝐵𝐴
43necomi 2460 1 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wcel 2175  wne 2375   class class class wbr 4043  cr 7906   < clt 8089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-pre-ltirr 8019
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-xp 4679  df-pnf 8091  df-mnf 8092  df-ltxr 8094
This theorem is referenced by:  0ne1  9085  1ne2  9225  3dvds  12094  2strbasg  12870  2stropg  12871  plusgndxnmulrndx  12883  basendxnmulrndx  12884  slotsdifipndx  12925  slotsdifplendx  12960  basendxnocndx  12963  plendxnocndx  12964  slotsdifdsndx  12975  slotsdifunifndx  12982  setsmsbasg  14869  2lgslem3  15496  2lgslem4  15498  apdiff  15851
  Copyright terms: Public domain W3C validator