![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ltneii | GIF version |
Description: 'Greater than' implies not equal. (Contributed by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
ltneii.2 | ⊢ 𝐴 < 𝐵 |
Ref | Expression |
---|---|
ltneii | ⊢ 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
2 | ltneii.2 | . . 3 ⊢ 𝐴 < 𝐵 | |
3 | 1, 2 | gtneii 8070 | . 2 ⊢ 𝐵 ≠ 𝐴 |
4 | 3 | necomi 2444 | 1 ⊢ 𝐴 ≠ 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2159 ≠ wne 2359 class class class wbr 4017 ℝcr 7827 < clt 8009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-pre-ltirr 7940 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-rab 2476 df-v 2753 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-br 4018 df-opab 4079 df-xp 4646 df-pnf 8011 df-mnf 8012 df-ltxr 8014 |
This theorem is referenced by: 0ne1 9003 1ne2 9142 2strbasg 12596 2stropg 12597 plusgndxnmulrndx 12609 basendxnmulrndx 12610 slotsdifipndx 12651 slotsdifplendx 12686 slotsdifdsndx 12697 slotsdifunifndx 12704 setsmsbasg 14362 apdiff 15180 |
Copyright terms: Public domain | W3C validator |