![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ressplusgd | GIF version |
Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
ressplusgd.1 | ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) |
ressplusgd.2 | ⊢ (𝜑 → + = (+g‘𝐺)) |
ressplusgd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ressplusgd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
Ref | Expression |
---|---|
ressplusgd | ⊢ (𝜑 → + = (+g‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2188 | . . 3 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
2 | eqid 2188 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | plusgslid 12589 | . . 3 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
4 | basendxnplusgndx 12601 | . . . 4 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
5 | 4 | necomi 2444 | . . 3 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
6 | ressplusgd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
7 | ressplusgd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
8 | 1, 2, 3, 5, 6, 7 | resseqnbasd 12550 | . 2 ⊢ (𝜑 → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐴))) |
9 | ressplusgd.2 | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
10 | ressplusgd.1 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) | |
11 | 10 | fveq2d 5533 | . 2 ⊢ (𝜑 → (+g‘𝐻) = (+g‘(𝐺 ↾s 𝐴))) |
12 | 8, 9, 11 | 3eqtr4d 2231 | 1 ⊢ (𝜑 → + = (+g‘𝐻)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2159 ‘cfv 5230 (class class class)co 5890 ndxcnx 12476 Basecbs 12479 ↾s cress 12480 +gcplusg 12554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-1cn 7921 ax-1re 7922 ax-icn 7923 ax-addcl 7924 ax-addrcl 7925 ax-mulcl 7926 ax-addcom 7928 ax-addass 7930 ax-i2m1 7933 ax-0lt1 7934 ax-0id 7936 ax-rnegex 7937 ax-pre-ltirr 7940 ax-pre-ltadd 7944 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-rab 2476 df-v 2753 df-sbc 2977 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-nul 3437 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-iota 5192 df-fun 5232 df-fv 5238 df-ov 5893 df-oprab 5894 df-mpo 5895 df-pnf 8011 df-mnf 8012 df-ltxr 8014 df-inn 8937 df-2 8995 df-ndx 12482 df-slot 12483 df-base 12485 df-sets 12486 df-iress 12487 df-plusg 12567 |
This theorem is referenced by: issubmnd 12868 ress0g 12869 resmhm 12904 resmhm2 12905 resmhm2b 12906 grpressid 12970 subg0 13084 subginv 13085 subgcl 13088 subgsub 13090 subgmulg 13092 issubg2m 13093 nmznsg 13117 resghm 13159 subgabl 13229 subcmnd 13230 ablressid 13232 rngressid 13268 ringidss 13343 ringressid 13373 opprsubgg 13394 unitgrp 13426 unitlinv 13436 unitrinv 13437 invrpropdg 13459 rhmunitinv 13488 issubrng2 13517 subrngpropd 13523 subrgugrp 13547 issubrg2 13548 subrgpropd 13555 islss3 13655 sralmod 13726 rnglidlrng 13774 zringplusg 13856 |
Copyright terms: Public domain | W3C validator |