| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressplusgd | GIF version | ||
| Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressplusgd.1 | ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) |
| ressplusgd.2 | ⊢ (𝜑 → + = (+g‘𝐺)) |
| ressplusgd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ressplusgd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ressplusgd | ⊢ (𝜑 → + = (+g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
| 2 | eqid 2196 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | plusgslid 12803 | . . 3 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 4 | basendxnplusgndx 12815 | . . . 4 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 5 | 4 | necomi 2452 | . . 3 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
| 6 | ressplusgd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 7 | ressplusgd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | 1, 2, 3, 5, 6, 7 | resseqnbasd 12764 | . 2 ⊢ (𝜑 → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐴))) |
| 9 | ressplusgd.2 | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 10 | ressplusgd.1 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) | |
| 11 | 10 | fveq2d 5565 | . 2 ⊢ (𝜑 → (+g‘𝐻) = (+g‘(𝐺 ↾s 𝐴))) |
| 12 | 8, 9, 11 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → + = (+g‘𝐻)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 ndxcnx 12688 Basecbs 12691 ↾s cress 12692 +gcplusg 12768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7975 ax-resscn 7976 ax-1cn 7977 ax-1re 7978 ax-icn 7979 ax-addcl 7980 ax-addrcl 7981 ax-mulcl 7982 ax-addcom 7984 ax-addass 7986 ax-i2m1 7989 ax-0lt1 7990 ax-0id 7992 ax-rnegex 7993 ax-pre-ltirr 7996 ax-pre-ltadd 8000 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8068 df-mnf 8069 df-ltxr 8071 df-inn 8996 df-2 9054 df-ndx 12694 df-slot 12695 df-base 12697 df-sets 12698 df-iress 12699 df-plusg 12781 |
| This theorem is referenced by: gsumress 13085 issubmnd 13130 ress0g 13131 resmhm 13166 resmhm2 13167 resmhm2b 13168 grpressid 13240 submmulg 13343 subg0 13357 subginv 13358 subgcl 13361 subgsub 13363 subgmulg 13365 issubg2m 13366 nmznsg 13390 resghm 13437 subgabl 13509 subcmnd 13510 ablressid 13512 rngressid 13557 ringidss 13632 ringressid 13666 opprsubgg 13687 unitgrp 13719 unitlinv 13729 unitrinv 13730 invrpropdg 13752 rhmunitinv 13781 issubrng2 13813 subrngpropd 13819 subrgugrp 13843 issubrg2 13844 subrgpropd 13856 islss3 13982 sralmod 14053 rnglidlrng 14101 zringplusg 14200 expghmap 14210 |
| Copyright terms: Public domain | W3C validator |