| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressplusgd | GIF version | ||
| Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressplusgd.1 | ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) |
| ressplusgd.2 | ⊢ (𝜑 → + = (+g‘𝐺)) |
| ressplusgd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ressplusgd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ressplusgd | ⊢ (𝜑 → + = (+g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
| 2 | eqid 2196 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | plusgslid 12817 | . . 3 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 4 | basendxnplusgndx 12829 | . . . 4 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 5 | 4 | necomi 2452 | . . 3 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
| 6 | ressplusgd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 7 | ressplusgd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | 1, 2, 3, 5, 6, 7 | resseqnbasd 12778 | . 2 ⊢ (𝜑 → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐴))) |
| 9 | ressplusgd.2 | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 10 | ressplusgd.1 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) | |
| 11 | 10 | fveq2d 5565 | . 2 ⊢ (𝜑 → (+g‘𝐻) = (+g‘(𝐺 ↾s 𝐴))) |
| 12 | 8, 9, 11 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → + = (+g‘𝐻)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 ndxcnx 12702 Basecbs 12705 ↾s cress 12706 +gcplusg 12782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-ltirr 8010 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-ltxr 8085 df-inn 9010 df-2 9068 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 df-plusg 12795 |
| This theorem is referenced by: gsumress 13099 issubmnd 13146 ress0g 13147 resmhm 13191 resmhm2 13192 resmhm2b 13193 grpressid 13265 submmulg 13374 subg0 13388 subginv 13389 subgcl 13392 subgsub 13394 subgmulg 13396 issubg2m 13397 nmznsg 13421 resghm 13468 subgabl 13540 subcmnd 13541 ablressid 13543 rngressid 13588 ringidss 13663 ringressid 13697 opprsubgg 13718 unitgrp 13750 unitlinv 13760 unitrinv 13761 invrpropdg 13783 rhmunitinv 13812 issubrng2 13844 subrngpropd 13850 subrgugrp 13874 issubrg2 13875 subrgpropd 13887 islss3 14013 sralmod 14084 rnglidlrng 14132 zringplusg 14231 expghmap 14241 mplplusgg 14337 |
| Copyright terms: Public domain | W3C validator |