| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ressplusgd | GIF version | ||
| Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| ressplusgd.1 | ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) | 
| ressplusgd.2 | ⊢ (𝜑 → + = (+g‘𝐺)) | 
| ressplusgd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| ressplusgd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) | 
| Ref | Expression | 
|---|---|
| ressplusgd | ⊢ (𝜑 → + = (+g‘𝐻)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | . . 3 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
| 2 | eqid 2196 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | plusgslid 12790 | . . 3 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 4 | basendxnplusgndx 12802 | . . . 4 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 5 | 4 | necomi 2452 | . . 3 ⊢ (+g‘ndx) ≠ (Base‘ndx) | 
| 6 | ressplusgd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 7 | ressplusgd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | 1, 2, 3, 5, 6, 7 | resseqnbasd 12751 | . 2 ⊢ (𝜑 → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐴))) | 
| 9 | ressplusgd.2 | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 10 | ressplusgd.1 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) | |
| 11 | 10 | fveq2d 5562 | . 2 ⊢ (𝜑 → (+g‘𝐻) = (+g‘(𝐺 ↾s 𝐴))) | 
| 12 | 8, 9, 11 | 3eqtr4d 2239 | 1 ⊢ (𝜑 → + = (+g‘𝐻)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 ndxcnx 12675 Basecbs 12678 ↾s cress 12679 +gcplusg 12755 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 | 
| This theorem is referenced by: gsumress 13038 issubmnd 13083 ress0g 13084 resmhm 13119 resmhm2 13120 resmhm2b 13121 grpressid 13193 submmulg 13296 subg0 13310 subginv 13311 subgcl 13314 subgsub 13316 subgmulg 13318 issubg2m 13319 nmznsg 13343 resghm 13390 subgabl 13462 subcmnd 13463 ablressid 13465 rngressid 13510 ringidss 13585 ringressid 13619 opprsubgg 13640 unitgrp 13672 unitlinv 13682 unitrinv 13683 invrpropdg 13705 rhmunitinv 13734 issubrng2 13766 subrngpropd 13772 subrgugrp 13796 issubrg2 13797 subrgpropd 13809 islss3 13935 sralmod 14006 rnglidlrng 14054 zringplusg 14153 expghmap 14163 | 
| Copyright terms: Public domain | W3C validator |