ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressplusgd GIF version

Theorem ressplusgd 12819
Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
ressplusgd.1 (𝜑𝐻 = (𝐺s 𝐴))
ressplusgd.2 (𝜑+ = (+g𝐺))
ressplusgd.a (𝜑𝐴𝑉)
ressplusgd.g (𝜑𝐺𝑊)
Assertion
Ref Expression
ressplusgd (𝜑+ = (+g𝐻))

Proof of Theorem ressplusgd
StepHypRef Expression
1 eqid 2196 . . 3 (𝐺s 𝐴) = (𝐺s 𝐴)
2 eqid 2196 . . 3 (+g𝐺) = (+g𝐺)
3 plusgslid 12803 . . 3 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4 basendxnplusgndx 12815 . . . 4 (Base‘ndx) ≠ (+g‘ndx)
54necomi 2452 . . 3 (+g‘ndx) ≠ (Base‘ndx)
6 ressplusgd.g . . 3 (𝜑𝐺𝑊)
7 ressplusgd.a . . 3 (𝜑𝐴𝑉)
81, 2, 3, 5, 6, 7resseqnbasd 12764 . 2 (𝜑 → (+g𝐺) = (+g‘(𝐺s 𝐴)))
9 ressplusgd.2 . 2 (𝜑+ = (+g𝐺))
10 ressplusgd.1 . . 3 (𝜑𝐻 = (𝐺s 𝐴))
1110fveq2d 5565 . 2 (𝜑 → (+g𝐻) = (+g‘(𝐺s 𝐴)))
128, 9, 113eqtr4d 2239 1 (𝜑+ = (+g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  ndxcnx 12688  Basecbs 12691  s cress 12692  +gcplusg 12768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7975  ax-resscn 7976  ax-1cn 7977  ax-1re 7978  ax-icn 7979  ax-addcl 7980  ax-addrcl 7981  ax-mulcl 7982  ax-addcom 7984  ax-addass 7986  ax-i2m1 7989  ax-0lt1 7990  ax-0id 7992  ax-rnegex 7993  ax-pre-ltirr 7996  ax-pre-ltadd 8000
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8068  df-mnf 8069  df-ltxr 8071  df-inn 8996  df-2 9054  df-ndx 12694  df-slot 12695  df-base 12697  df-sets 12698  df-iress 12699  df-plusg 12781
This theorem is referenced by:  gsumress  13085  issubmnd  13130  ress0g  13131  resmhm  13166  resmhm2  13167  resmhm2b  13168  grpressid  13240  submmulg  13343  subg0  13357  subginv  13358  subgcl  13361  subgsub  13363  subgmulg  13365  issubg2m  13366  nmznsg  13390  resghm  13437  subgabl  13509  subcmnd  13510  ablressid  13512  rngressid  13557  ringidss  13632  ringressid  13666  opprsubgg  13687  unitgrp  13719  unitlinv  13729  unitrinv  13730  invrpropdg  13752  rhmunitinv  13781  issubrng2  13813  subrngpropd  13819  subrgugrp  13843  issubrg2  13844  subrgpropd  13856  islss3  13982  sralmod  14053  rnglidlrng  14101  zringplusg  14200  expghmap  14210
  Copyright terms: Public domain W3C validator