| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ressplusgd | GIF version | ||
| Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| ressplusgd.1 | ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) |
| ressplusgd.2 | ⊢ (𝜑 → + = (+g‘𝐺)) |
| ressplusgd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ressplusgd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ressplusgd | ⊢ (𝜑 → + = (+g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2204 | . . 3 ⊢ (𝐺 ↾s 𝐴) = (𝐺 ↾s 𝐴) | |
| 2 | eqid 2204 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | plusgslid 12886 | . . 3 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 4 | basendxnplusgndx 12899 | . . . 4 ⊢ (Base‘ndx) ≠ (+g‘ndx) | |
| 5 | 4 | necomi 2460 | . . 3 ⊢ (+g‘ndx) ≠ (Base‘ndx) |
| 6 | ressplusgd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 7 | ressplusgd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | 1, 2, 3, 5, 6, 7 | resseqnbasd 12847 | . 2 ⊢ (𝜑 → (+g‘𝐺) = (+g‘(𝐺 ↾s 𝐴))) |
| 9 | ressplusgd.2 | . 2 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 10 | ressplusgd.1 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐺 ↾s 𝐴)) | |
| 11 | 10 | fveq2d 5579 | . 2 ⊢ (𝜑 → (+g‘𝐻) = (+g‘(𝐺 ↾s 𝐴))) |
| 12 | 8, 9, 11 | 3eqtr4d 2247 | 1 ⊢ (𝜑 → + = (+g‘𝐻)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ‘cfv 5270 (class class class)co 5943 ndxcnx 12771 Basecbs 12774 ↾s cress 12775 +gcplusg 12851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-iress 12782 df-plusg 12864 |
| This theorem is referenced by: gsumress 13169 issubmnd 13216 ress0g 13217 resmhm 13261 resmhm2 13262 resmhm2b 13263 grpressid 13335 submmulg 13444 subg0 13458 subginv 13459 subgcl 13462 subgsub 13464 subgmulg 13466 issubg2m 13467 nmznsg 13491 resghm 13538 subgabl 13610 subcmnd 13611 ablressid 13613 rngressid 13658 ringidss 13733 ringressid 13767 opprsubgg 13788 unitgrp 13820 unitlinv 13830 unitrinv 13831 invrpropdg 13853 rhmunitinv 13882 issubrng2 13914 subrngpropd 13920 subrgugrp 13944 issubrg2 13945 subrgpropd 13957 islss3 14083 sralmod 14154 rnglidlrng 14202 zringplusg 14301 expghmap 14311 mplplusgg 14407 |
| Copyright terms: Public domain | W3C validator |