ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressplusgd GIF version

Theorem ressplusgd 12831
Description: +g is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypotheses
Ref Expression
ressplusgd.1 (𝜑𝐻 = (𝐺s 𝐴))
ressplusgd.2 (𝜑+ = (+g𝐺))
ressplusgd.a (𝜑𝐴𝑉)
ressplusgd.g (𝜑𝐺𝑊)
Assertion
Ref Expression
ressplusgd (𝜑+ = (+g𝐻))

Proof of Theorem ressplusgd
StepHypRef Expression
1 eqid 2196 . . 3 (𝐺s 𝐴) = (𝐺s 𝐴)
2 eqid 2196 . . 3 (+g𝐺) = (+g𝐺)
3 plusgslid 12815 . . 3 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4 basendxnplusgndx 12827 . . . 4 (Base‘ndx) ≠ (+g‘ndx)
54necomi 2452 . . 3 (+g‘ndx) ≠ (Base‘ndx)
6 ressplusgd.g . . 3 (𝜑𝐺𝑊)
7 ressplusgd.a . . 3 (𝜑𝐴𝑉)
81, 2, 3, 5, 6, 7resseqnbasd 12776 . 2 (𝜑 → (+g𝐺) = (+g‘(𝐺s 𝐴)))
9 ressplusgd.2 . 2 (𝜑+ = (+g𝐺))
10 ressplusgd.1 . . 3 (𝜑𝐻 = (𝐺s 𝐴))
1110fveq2d 5565 . 2 (𝜑 → (+g𝐻) = (+g‘(𝐺s 𝐴)))
128, 9, 113eqtr4d 2239 1 (𝜑+ = (+g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  ndxcnx 12700  Basecbs 12703  s cress 12704  +gcplusg 12780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793
This theorem is referenced by:  gsumress  13097  issubmnd  13144  ress0g  13145  resmhm  13189  resmhm2  13190  resmhm2b  13191  grpressid  13263  submmulg  13372  subg0  13386  subginv  13387  subgcl  13390  subgsub  13392  subgmulg  13394  issubg2m  13395  nmznsg  13419  resghm  13466  subgabl  13538  subcmnd  13539  ablressid  13541  rngressid  13586  ringidss  13661  ringressid  13695  opprsubgg  13716  unitgrp  13748  unitlinv  13758  unitrinv  13759  invrpropdg  13781  rhmunitinv  13810  issubrng2  13842  subrngpropd  13848  subrgugrp  13872  issubrg2  13873  subrgpropd  13885  islss3  14011  sralmod  14082  rnglidlrng  14130  zringplusg  14229  expghmap  14239
  Copyright terms: Public domain W3C validator