![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1ne0 | GIF version |
Description: 1 ≠ 0. See aso 1ap0 8609. (Contributed by Jim Kingdon, 9-Mar-2020.) |
Ref | Expression |
---|---|
1ne0 | ⊢ 1 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ne1 9049 | . 2 ⊢ 0 ≠ 1 | |
2 | 1 | necomi 2449 | 1 ⊢ 1 ≠ 0 |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2364 0cc0 7872 1c1 7873 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 ax-0lt1 7978 ax-rnegex 7981 ax-pre-ltirr 7984 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-pnf 8056 df-mnf 8057 df-ltxr 8059 |
This theorem is referenced by: neg1ne0 9089 efne0 11821 mod2eq1n2dvds 12020 m1exp1 12042 gcd1 12124 rpdvds 12237 m1dvdsndvds 12386 pcpre1 12430 pc1 12443 pcrec 12446 pcid 12462 zringnzr 14090 lgsne0 15154 1lgs 15159 gausslemma2dlem0i 15173 2sqlem7 15208 2sqlem8a 15209 2sqlem8 15210 trirec0xor 15535 dceqnconst 15550 dcapnconst 15551 |
Copyright terms: Public domain | W3C validator |