ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ne0 GIF version

Theorem 1ne0 8958
Description: 1 ≠ 0. See aso 1ap0 8521. (Contributed by Jim Kingdon, 9-Mar-2020.)
Assertion
Ref Expression
1ne0 1 ≠ 0

Proof of Theorem 1ne0
StepHypRef Expression
1 0ne1 8957 . 2 0 ≠ 1
21necomi 2430 1 1 ≠ 0
Colors of variables: wff set class
Syntax hints:  wne 2345  0cc0 7786  1c1 7787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883  ax-0lt1 7892  ax-rnegex 7895  ax-pre-ltirr 7898
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-pnf 7968  df-mnf 7969  df-ltxr 7971
This theorem is referenced by:  neg1ne0  8997  efne0  11652  mod2eq1n2dvds  11849  m1exp1  11871  gcd1  11953  rpdvds  12064  m1dvdsndvds  12213  pcpre1  12257  pc1  12270  pcrec  12273  pcid  12288  lgsne0  13990  1lgs  13995  2sqlem7  14008  2sqlem8a  14009  2sqlem8  14010  trirec0xor  14334  dceqnconst  14348  dcapnconst  14349
  Copyright terms: Public domain W3C validator