ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ne0 GIF version

Theorem 1ne0 9052
Description: 1 ≠ 0. See aso 1ap0 8611. (Contributed by Jim Kingdon, 9-Mar-2020.)
Assertion
Ref Expression
1ne0 1 ≠ 0

Proof of Theorem 1ne0
StepHypRef Expression
1 0ne1 9051 . 2 0 ≠ 1
21necomi 2449 1 1 ≠ 0
Colors of variables: wff set class
Syntax hints:  wne 2364  0cc0 7874  1c1 7875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971  ax-0lt1 7980  ax-rnegex 7983  ax-pre-ltirr 7986
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-pnf 8058  df-mnf 8059  df-ltxr 8061
This theorem is referenced by:  neg1ne0  9091  efne0  11824  mod2eq1n2dvds  12023  m1exp1  12045  gcd1  12127  rpdvds  12240  m1dvdsndvds  12389  pcpre1  12433  pc1  12446  pcrec  12449  pcid  12465  zringnzr  14101  lgsne0  15195  1lgs  15200  gausslemma2dlem0i  15214  lgsquad2lem2  15239  2lgs  15261  2sqlem7  15278  2sqlem8a  15279  2sqlem8  15280  trirec0xor  15605  dceqnconst  15620  dcapnconst  15621
  Copyright terms: Public domain W3C validator