| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1ne0 | GIF version | ||
| Description: 1 ≠ 0. See aso 1ap0 8662. (Contributed by Jim Kingdon, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| 1ne0 | ⊢ 1 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ne1 9102 | . 2 ⊢ 0 ≠ 1 | |
| 2 | 1 | necomi 2460 | 1 ⊢ 1 ≠ 0 |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2375 0cc0 7924 1c1 7925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 ax-0lt1 8030 ax-rnegex 8033 ax-pre-ltirr 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-pnf 8108 df-mnf 8109 df-ltxr 8111 |
| This theorem is referenced by: neg1ne0 9142 efne0 11931 mod2eq1n2dvds 12132 m1exp1 12154 gcd1 12250 rpdvds 12363 m1dvdsndvds 12513 pcpre1 12557 pc1 12570 pcrec 12573 pcid 12589 zringnzr 14306 lgsne0 15457 1lgs 15462 gausslemma2dlem0i 15476 lgsquad2lem2 15501 2lgs 15523 2sqlem7 15540 2sqlem8a 15541 2sqlem8 15542 trirec0xor 15917 dceqnconst 15932 dcapnconst 15933 |
| Copyright terms: Public domain | W3C validator |