ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ne0 GIF version

Theorem 1ne0 9058
Description: 1 ≠ 0. See aso 1ap0 8617. (Contributed by Jim Kingdon, 9-Mar-2020.)
Assertion
Ref Expression
1ne0 1 ≠ 0

Proof of Theorem 1ne0
StepHypRef Expression
1 0ne1 9057 . 2 0 ≠ 1
21necomi 2452 1 1 ≠ 0
Colors of variables: wff set class
Syntax hints:  wne 2367  0cc0 7879  1c1 7880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-0lt1 7985  ax-rnegex 7988  ax-pre-ltirr 7991
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-pnf 8063  df-mnf 8064  df-ltxr 8066
This theorem is referenced by:  neg1ne0  9097  efne0  11843  mod2eq1n2dvds  12044  m1exp1  12066  gcd1  12154  rpdvds  12267  m1dvdsndvds  12417  pcpre1  12461  pc1  12474  pcrec  12477  pcid  12493  zringnzr  14158  lgsne0  15279  1lgs  15284  gausslemma2dlem0i  15298  lgsquad2lem2  15323  2lgs  15345  2sqlem7  15362  2sqlem8a  15363  2sqlem8  15364  trirec0xor  15689  dceqnconst  15704  dcapnconst  15705
  Copyright terms: Public domain W3C validator