![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1ne0 | GIF version |
Description: 1 ≠ 0. See aso 1ap0 8521. (Contributed by Jim Kingdon, 9-Mar-2020.) |
Ref | Expression |
---|---|
1ne0 | ⊢ 1 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ne1 8957 | . 2 ⊢ 0 ≠ 1 | |
2 | 1 | necomi 2430 | 1 ⊢ 1 ≠ 0 |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2345 0cc0 7786 1c1 7787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 ax-0lt1 7892 ax-rnegex 7895 ax-pre-ltirr 7898 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-xp 4626 df-pnf 7968 df-mnf 7969 df-ltxr 7971 |
This theorem is referenced by: neg1ne0 8997 efne0 11652 mod2eq1n2dvds 11849 m1exp1 11871 gcd1 11953 rpdvds 12064 m1dvdsndvds 12213 pcpre1 12257 pc1 12270 pcrec 12273 pcid 12288 lgsne0 13990 1lgs 13995 2sqlem7 14008 2sqlem8a 14009 2sqlem8 14010 trirec0xor 14334 dceqnconst 14348 dcapnconst 14349 |
Copyright terms: Public domain | W3C validator |