| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1ne0 | GIF version | ||
| Description: 1 ≠ 0. See aso 1ap0 8733. (Contributed by Jim Kingdon, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| 1ne0 | ⊢ 1 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ne1 9173 | . 2 ⊢ 0 ≠ 1 | |
| 2 | 1 | necomi 2485 | 1 ⊢ 1 ≠ 0 |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2400 0cc0 7995 1c1 7996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 ax-0lt1 8101 ax-rnegex 8104 ax-pre-ltirr 8107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-pnf 8179 df-mnf 8180 df-ltxr 8182 |
| This theorem is referenced by: neg1ne0 9213 efne0 12184 mod2eq1n2dvds 12385 m1exp1 12407 gcd1 12503 rpdvds 12616 m1dvdsndvds 12766 pcpre1 12810 pc1 12823 pcrec 12826 pcid 12842 zringnzr 14560 lgsne0 15711 1lgs 15716 gausslemma2dlem0i 15730 lgsquad2lem2 15755 2lgs 15777 2sqlem7 15794 2sqlem8a 15795 2sqlem8 15796 trirec0xor 16372 dceqnconst 16387 dcapnconst 16388 |
| Copyright terms: Public domain | W3C validator |