ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1ne0 GIF version

Theorem 1ne0 8402
Description: 1 ≠ 0. See aso 1ap0 7985. (Contributed by Jim Kingdon, 9-Mar-2020.)
Assertion
Ref Expression
1ne0 1 ≠ 0

Proof of Theorem 1ne0
StepHypRef Expression
1 0ne1 8401 . 2 0 ≠ 1
21necomi 2336 1 1 ≠ 0
Colors of variables: wff set class
Syntax hints:  wne 2251  0cc0 7271  1c1 7272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-cnex 7357  ax-resscn 7358  ax-1re 7360  ax-addrcl 7363  ax-0lt1 7372  ax-rnegex 7375  ax-pre-ltirr 7378
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2616  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-opab 3869  df-xp 4410  df-pnf 7445  df-mnf 7446  df-ltxr 7448
This theorem is referenced by:  neg1ne0  8441  mod2eq1n2dvds  10673  m1exp1  10695  gcd1  10772  rpdvds  10875
  Copyright terms: Public domain W3C validator