| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1ne0 | GIF version | ||
| Description: 1 ≠ 0. See aso 1ap0 8636. (Contributed by Jim Kingdon, 9-Mar-2020.) |
| Ref | Expression |
|---|---|
| 1ne0 | ⊢ 1 ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ne1 9076 | . 2 ⊢ 0 ≠ 1 | |
| 2 | 1 | necomi 2452 | 1 ⊢ 1 ≠ 0 |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2367 0cc0 7898 1c1 7899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 ax-0lt1 8004 ax-rnegex 8007 ax-pre-ltirr 8010 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-pnf 8082 df-mnf 8083 df-ltxr 8085 |
| This theorem is referenced by: neg1ne0 9116 efne0 11862 mod2eq1n2dvds 12063 m1exp1 12085 gcd1 12181 rpdvds 12294 m1dvdsndvds 12444 pcpre1 12488 pc1 12501 pcrec 12504 pcid 12520 zringnzr 14236 lgsne0 15387 1lgs 15392 gausslemma2dlem0i 15406 lgsquad2lem2 15431 2lgs 15453 2sqlem7 15470 2sqlem8a 15471 2sqlem8 15472 trirec0xor 15802 dceqnconst 15817 dcapnconst 15818 |
| Copyright terms: Public domain | W3C validator |