Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1ne0 | GIF version |
Description: 1 ≠ 0. See aso 1ap0 8484. (Contributed by Jim Kingdon, 9-Mar-2020.) |
Ref | Expression |
---|---|
1ne0 | ⊢ 1 ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ne1 8920 | . 2 ⊢ 0 ≠ 1 | |
2 | 1 | necomi 2420 | 1 ⊢ 1 ≠ 0 |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2335 0cc0 7749 1c1 7750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 ax-0lt1 7855 ax-rnegex 7858 ax-pre-ltirr 7861 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-rab 2452 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-xp 4609 df-pnf 7931 df-mnf 7932 df-ltxr 7934 |
This theorem is referenced by: neg1ne0 8960 efne0 11615 mod2eq1n2dvds 11812 m1exp1 11834 gcd1 11916 rpdvds 12027 m1dvdsndvds 12176 pcpre1 12220 pc1 12233 pcrec 12236 pcid 12251 lgsne0 13539 1lgs 13544 2sqlem7 13557 2sqlem8a 13558 2sqlem8 13559 trirec0xor 13884 dceqnconst 13898 dcapnconst 13899 |
Copyright terms: Public domain | W3C validator |