ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvpr1o GIF version

Theorem fvpr1o 13249
Description: The value of a function with a domain of (at most) two elements. (Contributed by Jim Kingdon, 25-Sep-2023.)
Assertion
Ref Expression
fvpr1o (𝐵𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)

Proof of Theorem fvpr1o
StepHypRef Expression
1 1onn 6619 . 2 1o ∈ ω
2 1n0 6531 . . 3 1o ≠ ∅
32necomi 2462 . 2 ∅ ≠ 1o
4 fvpr2g 5804 . 2 ((1o ∈ ω ∧ 𝐵𝑉 ∧ ∅ ≠ 1o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
51, 3, 4mp3an13 1341 1 (𝐵𝑉 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘1o) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wne 2377  c0 3464  {cpr 3639  cop 3641  ωcom 4646  cfv 5280  1oc1o 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-res 4695  df-iota 5241  df-fun 5282  df-fv 5288  df-1o 6515
This theorem is referenced by:  fvprif  13250  xpsfeq  13252  xpsfrnel2  13253  xpsff1o  13256
  Copyright terms: Public domain W3C validator