| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfnepnf | GIF version | ||
| Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnfnepnf | ⊢ -∞ ≠ +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnemnf 8197 | . 2 ⊢ +∞ ≠ -∞ | |
| 2 | 1 | necomi 2485 | 1 ⊢ -∞ ≠ +∞ |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2400 +∞cpnf 8174 -∞cmnf 8175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-un 4523 ax-cnex 8086 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-pnf 8179 df-mnf 8180 df-xr 8181 |
| This theorem is referenced by: xrnepnf 9970 xrlttri3 9989 nltpnft 10006 xnegmnf 10021 xrpnfdc 10034 xaddmnf1 10040 xaddmnf2 10041 mnfaddpnf 10043 xaddnepnf 10050 xsubge0 10073 xposdif 10074 xleaddadd 10079 |
| Copyright terms: Public domain | W3C validator |