ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnepnf GIF version

Theorem mnfnepnf 8077
Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnfnepnf -∞ ≠ +∞

Proof of Theorem mnfnepnf
StepHypRef Expression
1 pnfnemnf 8076 . 2 +∞ ≠ -∞
21necomi 2449 1 -∞ ≠ +∞
Colors of variables: wff set class
Syntax hints:  wne 2364  +∞cpnf 8053  -∞cmnf 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-un 4465  ax-cnex 7965
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-rex 2478  df-rab 2481  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-pnf 8058  df-mnf 8059  df-xr 8060
This theorem is referenced by:  xrnepnf  9847  xrlttri3  9866  nltpnft  9883  xnegmnf  9898  xrpnfdc  9911  xaddmnf1  9917  xaddmnf2  9918  mnfaddpnf  9920  xaddnepnf  9927  xsubge0  9950  xposdif  9951  xleaddadd  9956
  Copyright terms: Public domain W3C validator