| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfnepnf | GIF version | ||
| Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnfnepnf | ⊢ -∞ ≠ +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnemnf 8081 | . 2 ⊢ +∞ ≠ -∞ | |
| 2 | 1 | necomi 2452 | 1 ⊢ -∞ ≠ +∞ |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2367 +∞cpnf 8058 -∞cmnf 8059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-un 4468 ax-cnex 7970 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-pnf 8063 df-mnf 8064 df-xr 8065 |
| This theorem is referenced by: xrnepnf 9853 xrlttri3 9872 nltpnft 9889 xnegmnf 9904 xrpnfdc 9917 xaddmnf1 9923 xaddmnf2 9924 mnfaddpnf 9926 xaddnepnf 9933 xsubge0 9956 xposdif 9957 xleaddadd 9962 |
| Copyright terms: Public domain | W3C validator |