![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mnfnepnf | GIF version |
Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
mnfnepnf | ⊢ -∞ ≠ +∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnemnf 8030 | . 2 ⊢ +∞ ≠ -∞ | |
2 | 1 | necomi 2445 | 1 ⊢ -∞ ≠ +∞ |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2360 +∞cpnf 8007 -∞cmnf 8008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-un 4448 ax-cnex 7920 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-rex 2474 df-rab 2477 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-uni 3825 df-pnf 8012 df-mnf 8013 df-xr 8014 |
This theorem is referenced by: xrnepnf 9796 xrlttri3 9815 nltpnft 9832 xnegmnf 9847 xrpnfdc 9860 xaddmnf1 9866 xaddmnf2 9867 mnfaddpnf 9869 xaddnepnf 9876 xsubge0 9899 xposdif 9900 xleaddadd 9905 |
Copyright terms: Public domain | W3C validator |