ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mnfnepnf GIF version

Theorem mnfnepnf 8082
Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
mnfnepnf -∞ ≠ +∞

Proof of Theorem mnfnepnf
StepHypRef Expression
1 pnfnemnf 8081 . 2 +∞ ≠ -∞
21necomi 2452 1 -∞ ≠ +∞
Colors of variables: wff set class
Syntax hints:  wne 2367  +∞cpnf 8058  -∞cmnf 8059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-un 4468  ax-cnex 7970
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-pnf 8063  df-mnf 8064  df-xr 8065
This theorem is referenced by:  xrnepnf  9853  xrlttri3  9872  nltpnft  9889  xnegmnf  9904  xrpnfdc  9917  xaddmnf1  9923  xaddmnf2  9924  mnfaddpnf  9926  xaddnepnf  9933  xsubge0  9956  xposdif  9957  xleaddadd  9962
  Copyright terms: Public domain W3C validator