| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfnepnf | GIF version | ||
| Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnfnepnf | ⊢ -∞ ≠ +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnemnf 8162 | . 2 ⊢ +∞ ≠ -∞ | |
| 2 | 1 | necomi 2463 | 1 ⊢ -∞ ≠ +∞ |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2378 +∞cpnf 8139 -∞cmnf 8140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-un 4498 ax-cnex 8051 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-pnf 8144 df-mnf 8145 df-xr 8146 |
| This theorem is referenced by: xrnepnf 9935 xrlttri3 9954 nltpnft 9971 xnegmnf 9986 xrpnfdc 9999 xaddmnf1 10005 xaddmnf2 10006 mnfaddpnf 10008 xaddnepnf 10015 xsubge0 10038 xposdif 10039 xleaddadd 10044 |
| Copyright terms: Public domain | W3C validator |