| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mnfnepnf | GIF version | ||
| Description: Minus and plus infinity are different (common case). (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| mnfnepnf | ⊢ -∞ ≠ +∞ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfnemnf 8127 | . 2 ⊢ +∞ ≠ -∞ | |
| 2 | 1 | necomi 2461 | 1 ⊢ -∞ ≠ +∞ |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2376 +∞cpnf 8104 -∞cmnf 8105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-un 4480 ax-cnex 8016 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-pnf 8109 df-mnf 8110 df-xr 8111 |
| This theorem is referenced by: xrnepnf 9900 xrlttri3 9919 nltpnft 9936 xnegmnf 9951 xrpnfdc 9964 xaddmnf1 9970 xaddmnf2 9971 mnfaddpnf 9973 xaddnepnf 9980 xsubge0 10003 xposdif 10004 xleaddadd 10009 |
| Copyright terms: Public domain | W3C validator |