ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuinr GIF version

Theorem djuinr 7165
Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7195 and djufun 7206) while the simpler statement (ran inl ∩ ran inr) = ∅ is easily recovered from it by substituting V for both 𝐴 and 𝐵 as done in casefun 7187). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuinr (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅

Proof of Theorem djuinr
StepHypRef Expression
1 djulf1or 7158 . . . 4 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
2 dff1o5 5531 . . . . 5 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) ↔ ((inl ↾ 𝐴):𝐴1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴)))
32simprbi 275 . . . 4 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) → ran (inl ↾ 𝐴) = ({∅} × 𝐴))
41, 3ax-mp 5 . . 3 ran (inl ↾ 𝐴) = ({∅} × 𝐴)
5 djurf1or 7159 . . . 4 (inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵)
6 dff1o5 5531 . . . . 5 ((inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵) ↔ ((inr ↾ 𝐵):𝐵1-1→({1o} × 𝐵) ∧ ran (inr ↾ 𝐵) = ({1o} × 𝐵)))
76simprbi 275 . . . 4 ((inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵) → ran (inr ↾ 𝐵) = ({1o} × 𝐵))
85, 7ax-mp 5 . . 3 ran (inr ↾ 𝐵) = ({1o} × 𝐵)
94, 8ineq12i 3372 . 2 (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = (({∅} × 𝐴) ∩ ({1o} × 𝐵))
10 1n0 6518 . . . . 5 1o ≠ ∅
1110necomi 2461 . . . 4 ∅ ≠ 1o
12 disjsn2 3696 . . . 4 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
1311, 12ax-mp 5 . . 3 ({∅} ∩ {1o}) = ∅
14 xpdisj1 5107 . . 3 (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅)
1513, 14ax-mp 5 . 2 (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅
169, 15eqtri 2226 1 (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wne 2376  cin 3165  c0 3460  {csn 3633   × cxp 4673  ran crn 4676  cres 4677  1-1wf1 5268  1-1-ontowf1o 5270  1oc1o 6495  inlcinl 7147  inrcinr 7148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-1st 6226  df-2nd 6227  df-1o 6502  df-inl 7149  df-inr 7150
This theorem is referenced by:  djuin  7166  casefun  7187  djudom  7195  djufun  7206
  Copyright terms: Public domain W3C validator