![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djuinr | GIF version |
Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 6928 and djufun 6939) while the simpler statement ⊢ (ran inl ∩ ran inr) = ∅ is easily recovered from it by substituting V for both 𝐴 and 𝐵 as done in casefun 6920). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djuinr | ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1or 6891 | . . . 4 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
2 | dff1o5 5330 | . . . . 5 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) ↔ ((inl ↾ 𝐴):𝐴–1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴))) | |
3 | 2 | simprbi 271 | . . . 4 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → ran (inl ↾ 𝐴) = ({∅} × 𝐴)) |
4 | 1, 3 | ax-mp 7 | . . 3 ⊢ ran (inl ↾ 𝐴) = ({∅} × 𝐴) |
5 | djurf1or 6892 | . . . 4 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
6 | dff1o5 5330 | . . . . 5 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) ↔ ((inr ↾ 𝐵):𝐵–1-1→({1o} × 𝐵) ∧ ran (inr ↾ 𝐵) = ({1o} × 𝐵))) | |
7 | 6 | simprbi 271 | . . . 4 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → ran (inr ↾ 𝐵) = ({1o} × 𝐵)) |
8 | 5, 7 | ax-mp 7 | . . 3 ⊢ ran (inr ↾ 𝐵) = ({1o} × 𝐵) |
9 | 4, 8 | ineq12i 3239 | . 2 ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = (({∅} × 𝐴) ∩ ({1o} × 𝐵)) |
10 | 1n0 6281 | . . . . 5 ⊢ 1o ≠ ∅ | |
11 | 10 | necomi 2365 | . . . 4 ⊢ ∅ ≠ 1o |
12 | disjsn2 3550 | . . . 4 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
13 | 11, 12 | ax-mp 7 | . . 3 ⊢ ({∅} ∩ {1o}) = ∅ |
14 | xpdisj1 4919 | . . 3 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) | |
15 | 13, 14 | ax-mp 7 | . 2 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ |
16 | 9, 15 | eqtri 2133 | 1 ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1312 ≠ wne 2280 ∩ cin 3034 ∅c0 3327 {csn 3491 × cxp 4495 ran crn 4498 ↾ cres 4499 –1-1→wf1 5076 –1-1-onto→wf1o 5078 1oc1o 6258 inlcinl 6880 inrcinr 6881 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-ral 2393 df-rex 2394 df-v 2657 df-sbc 2877 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-iord 4246 df-on 4248 df-suc 4251 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-1st 5990 df-2nd 5991 df-1o 6265 df-inl 6882 df-inr 6883 |
This theorem is referenced by: djuin 6899 casefun 6920 djudom 6928 djufun 6939 |
Copyright terms: Public domain | W3C validator |