Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuinr | GIF version |
Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7070 and djufun 7081) while the simpler statement ⊢ (ran inl ∩ ran inr) = ∅ is easily recovered from it by substituting V for both 𝐴 and 𝐵 as done in casefun 7062). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djuinr | ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1or 7033 | . . . 4 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
2 | dff1o5 5451 | . . . . 5 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) ↔ ((inl ↾ 𝐴):𝐴–1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴))) | |
3 | 2 | simprbi 273 | . . . 4 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → ran (inl ↾ 𝐴) = ({∅} × 𝐴)) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ran (inl ↾ 𝐴) = ({∅} × 𝐴) |
5 | djurf1or 7034 | . . . 4 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
6 | dff1o5 5451 | . . . . 5 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) ↔ ((inr ↾ 𝐵):𝐵–1-1→({1o} × 𝐵) ∧ ran (inr ↾ 𝐵) = ({1o} × 𝐵))) | |
7 | 6 | simprbi 273 | . . . 4 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → ran (inr ↾ 𝐵) = ({1o} × 𝐵)) |
8 | 5, 7 | ax-mp 5 | . . 3 ⊢ ran (inr ↾ 𝐵) = ({1o} × 𝐵) |
9 | 4, 8 | ineq12i 3326 | . 2 ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = (({∅} × 𝐴) ∩ ({1o} × 𝐵)) |
10 | 1n0 6411 | . . . . 5 ⊢ 1o ≠ ∅ | |
11 | 10 | necomi 2425 | . . . 4 ⊢ ∅ ≠ 1o |
12 | disjsn2 3646 | . . . 4 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ({∅} ∩ {1o}) = ∅ |
14 | xpdisj1 5035 | . . 3 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) | |
15 | 13, 14 | ax-mp 5 | . 2 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ |
16 | 9, 15 | eqtri 2191 | 1 ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ≠ wne 2340 ∩ cin 3120 ∅c0 3414 {csn 3583 × cxp 4609 ran crn 4612 ↾ cres 4613 –1-1→wf1 5195 –1-1-onto→wf1o 5197 1oc1o 6388 inlcinl 7022 inrcinr 7023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-inl 7024 df-inr 7025 |
This theorem is referenced by: djuin 7041 casefun 7062 djudom 7070 djufun 7081 |
Copyright terms: Public domain | W3C validator |