| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuinr | GIF version | ||
| Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7221 and djufun 7232) while the simpler statement ⊢ (ran inl ∩ ran inr) = ∅ is easily recovered from it by substituting V for both 𝐴 and 𝐵 as done in casefun 7213). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.) |
| Ref | Expression |
|---|---|
| djuinr | ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djulf1or 7184 | . . . 4 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
| 2 | dff1o5 5553 | . . . . 5 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) ↔ ((inl ↾ 𝐴):𝐴–1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴))) | |
| 3 | 2 | simprbi 275 | . . . 4 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → ran (inl ↾ 𝐴) = ({∅} × 𝐴)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ran (inl ↾ 𝐴) = ({∅} × 𝐴) |
| 5 | djurf1or 7185 | . . . 4 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
| 6 | dff1o5 5553 | . . . . 5 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) ↔ ((inr ↾ 𝐵):𝐵–1-1→({1o} × 𝐵) ∧ ran (inr ↾ 𝐵) = ({1o} × 𝐵))) | |
| 7 | 6 | simprbi 275 | . . . 4 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → ran (inr ↾ 𝐵) = ({1o} × 𝐵)) |
| 8 | 5, 7 | ax-mp 5 | . . 3 ⊢ ran (inr ↾ 𝐵) = ({1o} × 𝐵) |
| 9 | 4, 8 | ineq12i 3380 | . 2 ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = (({∅} × 𝐴) ∩ ({1o} × 𝐵)) |
| 10 | 1n0 6541 | . . . . 5 ⊢ 1o ≠ ∅ | |
| 11 | 10 | necomi 2463 | . . . 4 ⊢ ∅ ≠ 1o |
| 12 | disjsn2 3706 | . . . 4 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ({∅} ∩ {1o}) = ∅ |
| 14 | xpdisj1 5126 | . . 3 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) | |
| 15 | 13, 14 | ax-mp 5 | . 2 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ |
| 16 | 9, 15 | eqtri 2228 | 1 ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ≠ wne 2378 ∩ cin 3173 ∅c0 3468 {csn 3643 × cxp 4691 ran crn 4694 ↾ cres 4695 –1-1→wf1 5287 –1-1-onto→wf1o 5289 1oc1o 6518 inlcinl 7173 inrcinr 7174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-inl 7175 df-inr 7176 |
| This theorem is referenced by: djuin 7192 casefun 7213 djudom 7221 djufun 7232 |
| Copyright terms: Public domain | W3C validator |