ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuinr GIF version

Theorem djuinr 6898
Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 6928 and djufun 6939) while the simpler statement (ran inl ∩ ran inr) = ∅ is easily recovered from it by substituting V for both 𝐴 and 𝐵 as done in casefun 6920). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.)
Assertion
Ref Expression
djuinr (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅

Proof of Theorem djuinr
StepHypRef Expression
1 djulf1or 6891 . . . 4 (inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴)
2 dff1o5 5330 . . . . 5 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) ↔ ((inl ↾ 𝐴):𝐴1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴)))
32simprbi 271 . . . 4 ((inl ↾ 𝐴):𝐴1-1-onto→({∅} × 𝐴) → ran (inl ↾ 𝐴) = ({∅} × 𝐴))
41, 3ax-mp 7 . . 3 ran (inl ↾ 𝐴) = ({∅} × 𝐴)
5 djurf1or 6892 . . . 4 (inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵)
6 dff1o5 5330 . . . . 5 ((inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵) ↔ ((inr ↾ 𝐵):𝐵1-1→({1o} × 𝐵) ∧ ran (inr ↾ 𝐵) = ({1o} × 𝐵)))
76simprbi 271 . . . 4 ((inr ↾ 𝐵):𝐵1-1-onto→({1o} × 𝐵) → ran (inr ↾ 𝐵) = ({1o} × 𝐵))
85, 7ax-mp 7 . . 3 ran (inr ↾ 𝐵) = ({1o} × 𝐵)
94, 8ineq12i 3239 . 2 (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = (({∅} × 𝐴) ∩ ({1o} × 𝐵))
10 1n0 6281 . . . . 5 1o ≠ ∅
1110necomi 2365 . . . 4 ∅ ≠ 1o
12 disjsn2 3550 . . . 4 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
1311, 12ax-mp 7 . . 3 ({∅} ∩ {1o}) = ∅
14 xpdisj1 4919 . . 3 (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅)
1513, 14ax-mp 7 . 2 (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅
169, 15eqtri 2133 1 (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅
Colors of variables: wff set class
Syntax hints:   = wceq 1312  wne 2280  cin 3034  c0 3327  {csn 3491   × cxp 4495  ran crn 4498  cres 4499  1-1wf1 5076  1-1-ontowf1o 5078  1oc1o 6258  inlcinl 6880  inrcinr 6881
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-suc 4251  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-1st 5990  df-2nd 5991  df-1o 6265  df-inl 6882  df-inr 6883
This theorem is referenced by:  djuin  6899  casefun  6920  djudom  6928  djufun  6939
  Copyright terms: Public domain W3C validator