![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > djuinr | GIF version |
Description: The ranges of any left and right injections are disjoint. Remark: the extra generality offered by the two restrictions makes the theorem more readily usable (e.g., by djudom 7152 and djufun 7163) while the simpler statement ⊢ (ran inl ∩ ran inr) = ∅ is easily recovered from it by substituting V for both 𝐴 and 𝐵 as done in casefun 7144). (Contributed by BJ and Jim Kingdon, 21-Jun-2022.) |
Ref | Expression |
---|---|
djuinr | ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | djulf1or 7115 | . . . 4 ⊢ (inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) | |
2 | dff1o5 5509 | . . . . 5 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) ↔ ((inl ↾ 𝐴):𝐴–1-1→({∅} × 𝐴) ∧ ran (inl ↾ 𝐴) = ({∅} × 𝐴))) | |
3 | 2 | simprbi 275 | . . . 4 ⊢ ((inl ↾ 𝐴):𝐴–1-1-onto→({∅} × 𝐴) → ran (inl ↾ 𝐴) = ({∅} × 𝐴)) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ ran (inl ↾ 𝐴) = ({∅} × 𝐴) |
5 | djurf1or 7116 | . . . 4 ⊢ (inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) | |
6 | dff1o5 5509 | . . . . 5 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) ↔ ((inr ↾ 𝐵):𝐵–1-1→({1o} × 𝐵) ∧ ran (inr ↾ 𝐵) = ({1o} × 𝐵))) | |
7 | 6 | simprbi 275 | . . . 4 ⊢ ((inr ↾ 𝐵):𝐵–1-1-onto→({1o} × 𝐵) → ran (inr ↾ 𝐵) = ({1o} × 𝐵)) |
8 | 5, 7 | ax-mp 5 | . . 3 ⊢ ran (inr ↾ 𝐵) = ({1o} × 𝐵) |
9 | 4, 8 | ineq12i 3358 | . 2 ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = (({∅} × 𝐴) ∩ ({1o} × 𝐵)) |
10 | 1n0 6485 | . . . . 5 ⊢ 1o ≠ ∅ | |
11 | 10 | necomi 2449 | . . . 4 ⊢ ∅ ≠ 1o |
12 | disjsn2 3681 | . . . 4 ⊢ (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ({∅} ∩ {1o}) = ∅ |
14 | xpdisj1 5090 | . . 3 ⊢ (({∅} ∩ {1o}) = ∅ → (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅) | |
15 | 13, 14 | ax-mp 5 | . 2 ⊢ (({∅} × 𝐴) ∩ ({1o} × 𝐵)) = ∅ |
16 | 9, 15 | eqtri 2214 | 1 ⊢ (ran (inl ↾ 𝐴) ∩ ran (inr ↾ 𝐵)) = ∅ |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ≠ wne 2364 ∩ cin 3152 ∅c0 3446 {csn 3618 × cxp 4657 ran crn 4660 ↾ cres 4661 –1-1→wf1 5251 –1-1-onto→wf1o 5253 1oc1o 6462 inlcinl 7104 inrcinr 7105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-1st 6193 df-2nd 6194 df-1o 6469 df-inl 7106 df-inr 7107 |
This theorem is referenced by: djuin 7123 casefun 7144 djudom 7152 djufun 7163 |
Copyright terms: Public domain | W3C validator |