Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfixp1 GIF version

Theorem nfixp1 6619
 Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfixp1 𝑥X𝑥𝐴 𝐵

Proof of Theorem nfixp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 6600 . 2 X𝑥𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
2 nfcv 2282 . . . . 5 𝑥𝑦
3 nfab1 2284 . . . . 5 𝑥{𝑥𝑥𝐴}
42, 3nffn 5226 . . . 4 𝑥 𝑦 Fn {𝑥𝑥𝐴}
5 nfra1 2469 . . . 4 𝑥𝑥𝐴 (𝑦𝑥) ∈ 𝐵
64, 5nfan 1545 . . 3 𝑥(𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)
76nfab 2287 . 2 𝑥{𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
81, 7nfcxfr 2279 1 𝑥X𝑥𝐴 𝐵
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   ∈ wcel 1481  {cab 2126  Ⅎwnfc 2269  ∀wral 2417   Fn wfn 5125  ‘cfv 5130  Xcixp 6599 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-sn 3537  df-pr 3538  df-op 3540  df-br 3937  df-opab 3997  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-fun 5132  df-fn 5133  df-ixp 6600 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator