| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfixp1 | GIF version | ||
| Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfixp1 | ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ixp 6846 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵)} | |
| 2 | nfcv 2372 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfab1 2374 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 4 | 2, 3 | nffn 5417 | . . . 4 ⊢ Ⅎ𝑥 𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 5 | nfra1 2561 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵 | |
| 6 | 4, 5 | nfan 1611 | . . 3 ⊢ Ⅎ𝑥(𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵) |
| 7 | 6 | nfab 2377 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ (𝑦 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑦‘𝑥) ∈ 𝐵)} |
| 8 | 1, 7 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥X𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 ∀wral 2508 Fn wfn 5313 ‘cfv 5318 Xcixp 6845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-fun 5320 df-fn 5321 df-ixp 6846 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |