ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfixp1 GIF version

Theorem nfixp1 6684
Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfixp1 𝑥X𝑥𝐴 𝐵

Proof of Theorem nfixp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 6665 . 2 X𝑥𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
2 nfcv 2308 . . . . 5 𝑥𝑦
3 nfab1 2310 . . . . 5 𝑥{𝑥𝑥𝐴}
42, 3nffn 5284 . . . 4 𝑥 𝑦 Fn {𝑥𝑥𝐴}
5 nfra1 2497 . . . 4 𝑥𝑥𝐴 (𝑦𝑥) ∈ 𝐵
64, 5nfan 1553 . . 3 𝑥(𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)
76nfab 2313 . 2 𝑥{𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
81, 7nfcxfr 2305 1 𝑥X𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 103  wcel 2136  {cab 2151  wnfc 2295  wral 2444   Fn wfn 5183  cfv 5188  Xcixp 6664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-fun 5190  df-fn 5191  df-ixp 6665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator