ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfixp1 GIF version

Theorem nfixp1 6865
Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
nfixp1 𝑥X𝑥𝐴 𝐵

Proof of Theorem nfixp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ixp 6846 . 2 X𝑥𝐴 𝐵 = {𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
2 nfcv 2372 . . . . 5 𝑥𝑦
3 nfab1 2374 . . . . 5 𝑥{𝑥𝑥𝐴}
42, 3nffn 5417 . . . 4 𝑥 𝑦 Fn {𝑥𝑥𝐴}
5 nfra1 2561 . . . 4 𝑥𝑥𝐴 (𝑦𝑥) ∈ 𝐵
64, 5nfan 1611 . . 3 𝑥(𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)
76nfab 2377 . 2 𝑥{𝑦 ∣ (𝑦 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑦𝑥) ∈ 𝐵)}
81, 7nfcxfr 2369 1 𝑥X𝑥𝐴 𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wcel 2200  {cab 2215  wnfc 2359  wral 2508   Fn wfn 5313  cfv 5318  Xcixp 6845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-fun 5320  df-fn 5321  df-ixp 6846
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator