| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfmpt1 | GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| nfmpt1 | ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 4146 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 2 | nfopab1 4152 | . 2 ⊢ Ⅎ𝑥{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 3 | 1, 2 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 Ⅎwnfc 2359 {copab 4143 ↦ cmpt 4144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-opab 4145 df-mpt 4146 |
| This theorem is referenced by: nffvmpt1 5637 fvmptss2 5708 fvmptssdm 5718 fvmptdf 5721 mpteqb 5724 fvmptf 5726 ralrnmpt 5776 rexrnmpt 5777 f1ompt 5785 f1mpt 5894 fliftfun 5919 dom2lem 6921 mapxpen 7005 mkvprop 7321 cc3 7450 nfcprod1 12060 cnmpt11 14951 lgseisenlem2 15744 |
| Copyright terms: Public domain | W3C validator |