ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpt1 GIF version

Theorem nfmpt1 4082
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
Assertion
Ref Expression
nfmpt1 𝑥(𝑥𝐴𝐵)

Proof of Theorem nfmpt1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4052 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
2 nfopab1 4058 . 2 𝑥{⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
31, 2nfcxfr 2309 1 𝑥(𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wcel 2141  wnfc 2299  {copab 4049  cmpt 4050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-opab 4051  df-mpt 4052
This theorem is referenced by:  nffvmpt1  5507  fvmptss2  5571  fvmptssdm  5580  fvmptdf  5583  mpteqb  5586  fvmptf  5588  ralrnmpt  5638  rexrnmpt  5639  f1ompt  5647  f1mpt  5750  fliftfun  5775  dom2lem  6750  mapxpen  6826  mkvprop  7134  cc3  7230  nfcprod1  11517  cnmpt11  13077
  Copyright terms: Public domain W3C validator