| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfmpt1 | GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| nfmpt1 | ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 4115 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 2 | nfopab1 4121 | . 2 ⊢ Ⅎ𝑥{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 3 | 1, 2 | nfcxfr 2346 | 1 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 Ⅎwnfc 2336 {copab 4112 ↦ cmpt 4113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-opab 4114 df-mpt 4115 |
| This theorem is referenced by: nffvmpt1 5600 fvmptss2 5667 fvmptssdm 5677 fvmptdf 5680 mpteqb 5683 fvmptf 5685 ralrnmpt 5735 rexrnmpt 5736 f1ompt 5744 f1mpt 5853 fliftfun 5878 dom2lem 6876 mapxpen 6960 mkvprop 7275 cc3 7400 nfcprod1 11940 cnmpt11 14830 lgseisenlem2 15623 |
| Copyright terms: Public domain | W3C validator |