Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfmpt1 | GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.) |
Ref | Expression |
---|---|
nfmpt1 | ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 4052 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
2 | nfopab1 4058 | . 2 ⊢ Ⅎ𝑥{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
3 | 1, 2 | nfcxfr 2309 | 1 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 Ⅎwnfc 2299 {copab 4049 ↦ cmpt 4050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-opab 4051 df-mpt 4052 |
This theorem is referenced by: nffvmpt1 5507 fvmptss2 5571 fvmptssdm 5580 fvmptdf 5583 mpteqb 5586 fvmptf 5588 ralrnmpt 5638 rexrnmpt 5639 f1ompt 5647 f1mpt 5750 fliftfun 5775 dom2lem 6750 mapxpen 6826 mkvprop 7134 cc3 7230 nfcprod1 11517 cnmpt11 13077 |
Copyright terms: Public domain | W3C validator |