| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfmpt1 | GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.) |
| Ref | Expression |
|---|---|
| nfmpt1 | ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 4097 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 2 | nfopab1 4103 | . 2 ⊢ Ⅎ𝑥{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 3 | 1, 2 | nfcxfr 2336 | 1 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 Ⅎwnfc 2326 {copab 4094 ↦ cmpt 4095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-opab 4096 df-mpt 4097 |
| This theorem is referenced by: nffvmpt1 5572 fvmptss2 5639 fvmptssdm 5649 fvmptdf 5652 mpteqb 5655 fvmptf 5657 ralrnmpt 5707 rexrnmpt 5708 f1ompt 5716 f1mpt 5821 fliftfun 5846 dom2lem 6840 mapxpen 6918 mkvprop 7233 cc3 7351 nfcprod1 11736 cnmpt11 14603 lgseisenlem2 15396 |
| Copyright terms: Public domain | W3C validator |