Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfmpt1 | GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.) |
Ref | Expression |
---|---|
nfmpt1 | ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 4061 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
2 | nfopab1 4067 | . 2 ⊢ Ⅎ𝑥{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
3 | 1, 2 | nfcxfr 2314 | 1 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∈ wcel 2146 Ⅎwnfc 2304 {copab 4058 ↦ cmpt 4059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-opab 4060 df-mpt 4061 |
This theorem is referenced by: nffvmpt1 5518 fvmptss2 5583 fvmptssdm 5592 fvmptdf 5595 mpteqb 5598 fvmptf 5600 ralrnmpt 5650 rexrnmpt 5651 f1ompt 5659 f1mpt 5762 fliftfun 5787 dom2lem 6762 mapxpen 6838 mkvprop 7146 cc3 7242 nfcprod1 11528 cnmpt11 13334 |
Copyright terms: Public domain | W3C validator |