ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpt1 GIF version

Theorem nfmpt1 4176
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
Assertion
Ref Expression
nfmpt1 𝑥(𝑥𝐴𝐵)

Proof of Theorem nfmpt1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4146 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
2 nfopab1 4152 . 2 𝑥{⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
31, 2nfcxfr 2369 1 𝑥(𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  wnfc 2359  {copab 4143  cmpt 4144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-opab 4145  df-mpt 4146
This theorem is referenced by:  nffvmpt1  5637  fvmptss2  5708  fvmptssdm  5718  fvmptdf  5721  mpteqb  5724  fvmptf  5726  ralrnmpt  5776  rexrnmpt  5777  f1ompt  5785  f1mpt  5894  fliftfun  5919  dom2lem  6921  mapxpen  7005  mkvprop  7321  cc3  7450  nfcprod1  12060  cnmpt11  14951  lgseisenlem2  15744
  Copyright terms: Public domain W3C validator