ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfmpt1 GIF version

Theorem nfmpt1 4136
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by FL, 17-Feb-2008.)
Assertion
Ref Expression
nfmpt1 𝑥(𝑥𝐴𝐵)

Proof of Theorem nfmpt1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 4106 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
2 nfopab1 4112 . 2 𝑥{⟨𝑥, 𝑧⟩ ∣ (𝑥𝐴𝑧 = 𝐵)}
31, 2nfcxfr 2344 1 𝑥(𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wcel 2175  wnfc 2334  {copab 4103  cmpt 4104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-opab 4105  df-mpt 4106
This theorem is referenced by:  nffvmpt1  5581  fvmptss2  5648  fvmptssdm  5658  fvmptdf  5661  mpteqb  5664  fvmptf  5666  ralrnmpt  5716  rexrnmpt  5717  f1ompt  5725  f1mpt  5830  fliftfun  5855  dom2lem  6849  mapxpen  6927  mkvprop  7242  cc3  7362  nfcprod1  11784  cnmpt11  14673  lgseisenlem2  15466
  Copyright terms: Public domain W3C validator