![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funopab | GIF version |
Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.) |
Ref | Expression |
---|---|
funopab | ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 4788 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | nfopab1 4098 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | nfopab2 4099 | . . . 4 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
4 | 2, 3 | dffun6f 5267 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ (Rel {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ ∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦)) |
5 | 1, 4 | mpbiran 942 | . 2 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦) |
6 | df-br 4030 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
7 | opabid 4286 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
8 | 6, 7 | bitri 184 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
9 | 8 | mobii 2079 | . . 3 ⊢ (∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃*𝑦𝜑) |
10 | 9 | albii 1481 | . 2 ⊢ (∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∀𝑥∃*𝑦𝜑) |
11 | 5, 10 | bitri 184 | 1 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∀wal 1362 ∃*wmo 2043 ∈ wcel 2164 〈cop 3621 class class class wbr 4029 {copab 4089 Rel wrel 4664 Fun wfun 5248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-fun 5256 |
This theorem is referenced by: funopabeq 5290 isarep2 5341 fnopabg 5377 fvopab3ig 5631 opabex 5782 funoprabg 6017 |
Copyright terms: Public domain | W3C validator |