| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funopab | GIF version | ||
| Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.) |
| Ref | Expression |
|---|---|
| funopab | ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopab 4809 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | nfopab1 4118 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | nfopab2 4119 | . . . 4 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 4 | 2, 3 | dffun6f 5290 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ (Rel {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ ∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦)) |
| 5 | 1, 4 | mpbiran 943 | . 2 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦) |
| 6 | df-br 4049 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 7 | opabid 4307 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 8 | 6, 7 | bitri 184 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
| 9 | 8 | mobii 2092 | . . 3 ⊢ (∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃*𝑦𝜑) |
| 10 | 9 | albii 1494 | . 2 ⊢ (∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∀𝑥∃*𝑦𝜑) |
| 11 | 5, 10 | bitri 184 | 1 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1371 ∃*wmo 2056 ∈ wcel 2177 〈cop 3638 class class class wbr 4048 {copab 4109 Rel wrel 4685 Fun wfun 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-fun 5279 |
| This theorem is referenced by: funopabeq 5313 isarep2 5367 fnopabg 5406 fvopab3ig 5663 opabex 5818 funoprabg 6054 |
| Copyright terms: Public domain | W3C validator |