Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funopab | GIF version |
Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.) |
Ref | Expression |
---|---|
funopab | ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopab 4738 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | nfopab1 4058 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | nfopab2 4059 | . . . 4 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
4 | 2, 3 | dffun6f 5211 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ (Rel {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ ∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦)) |
5 | 1, 4 | mpbiran 935 | . 2 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦) |
6 | df-br 3990 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
7 | opabid 4242 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
8 | 6, 7 | bitri 183 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
9 | 8 | mobii 2056 | . . 3 ⊢ (∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃*𝑦𝜑) |
10 | 9 | albii 1463 | . 2 ⊢ (∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∀𝑥∃*𝑦𝜑) |
11 | 5, 10 | bitri 183 | 1 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1346 ∃*wmo 2020 ∈ wcel 2141 〈cop 3586 class class class wbr 3989 {copab 4049 Rel wrel 4616 Fun wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-fun 5200 |
This theorem is referenced by: funopabeq 5234 isarep2 5285 fnopabg 5321 fvopab3ig 5570 opabex 5720 funoprabg 5952 |
Copyright terms: Public domain | W3C validator |