![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnopab | GIF version |
Description: The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
rnopab | ⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfopab1 3955 | . . 3 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
2 | nfopab2 3956 | . . 3 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
3 | 1, 2 | dfrnf 4738 | . 2 ⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} |
4 | df-br 3894 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
5 | opabid 4137 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
6 | 4, 5 | bitri 183 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
7 | 6 | exbii 1565 | . . 3 ⊢ (∃𝑥 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃𝑥𝜑) |
8 | 7 | abbii 2228 | . 2 ⊢ {𝑦 ∣ ∃𝑥 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦} = {𝑦 ∣ ∃𝑥𝜑} |
9 | 3, 8 | eqtri 2133 | 1 ⊢ ran {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑} |
Colors of variables: wff set class |
Syntax hints: = wceq 1312 ∃wex 1449 ∈ wcel 1461 {cab 2099 〈cop 3494 class class class wbr 3893 {copab 3946 ran crn 4498 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-pr 4089 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-br 3894 df-opab 3948 df-cnv 4505 df-dm 4507 df-rn 4508 |
This theorem is referenced by: rnmpt 4745 mptpreima 4988 rnoprab 5806 |
Copyright terms: Public domain | W3C validator |