ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnopab GIF version

Theorem rnopab 4947
Description: The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
rnopab ran {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem rnopab
StepHypRef Expression
1 nfopab1 4132 . . 3 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 nfopab2 4133 . . 3 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
31, 2dfrnf 4941 . 2 ran {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑦 ∣ ∃𝑥 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦}
4 df-br 4063 . . . . 5 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
5 opabid 4323 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
64, 5bitri 184 . . . 4 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦𝜑)
76exbii 1631 . . 3 (∃𝑥 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∃𝑥𝜑)
87abbii 2325 . 2 {𝑦 ∣ ∃𝑥 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦} = {𝑦 ∣ ∃𝑥𝜑}
93, 8eqtri 2230 1 ran {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑦 ∣ ∃𝑥𝜑}
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wex 1518  wcel 2180  {cab 2195  cop 3649   class class class wbr 4062  {copab 4123  ran crn 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-cnv 4704  df-dm 4706  df-rn 4707
This theorem is referenced by:  rnmpt  4948  mptpreima  5198  rnoprab  6058
  Copyright terms: Public domain W3C validator