![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmopab | GIF version |
Description: The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.) |
Ref | Expression |
---|---|
dmopab | ⊢ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfopab1 4074 | . . 3 ⊢ Ⅎ𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
2 | nfopab2 4075 | . . 3 ⊢ Ⅎ𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
3 | 1, 2 | dfdmf 4822 | . 2 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦} |
4 | df-br 4006 | . . . . 5 ⊢ (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}) | |
5 | opabid 4259 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑) | |
6 | 4, 5 | bitri 184 | . . . 4 ⊢ (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ 𝜑) |
7 | 6 | exbii 1605 | . . 3 ⊢ (∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∃𝑦𝜑) |
8 | 7 | abbii 2293 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦} = {𝑥 ∣ ∃𝑦𝜑} |
9 | 3, 8 | eqtri 2198 | 1 ⊢ dom {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑥 ∣ ∃𝑦𝜑} |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∃wex 1492 ∈ wcel 2148 {cab 2163 ⟨cop 3597 class class class wbr 4005 {copab 4065 dom cdm 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-dm 4638 |
This theorem is referenced by: dmopabss 4841 dmopab3 4842 fndmin 5625 dmoprab 5958 shftdm 10833 |
Copyright terms: Public domain | W3C validator |