| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqdr | GIF version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 5961 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | 2 | adantr 276 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 (class class class)co 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: gsumpropd 13224 grppropstrg 13351 grpsubpropdg 13436 isrngd 13715 crngpropd 13801 isringd 13803 ring1 13821 opprrng 13839 opprrngbg 13840 opprring 13841 opprringbg 13842 opprsubgg 13846 mulgass3 13847 rngidpropdg 13908 invrpropdg 13911 subrngpropd 13978 subrgpropd 14015 isdomn 14031 sraring 14211 sralmod 14212 sralmod0g 14213 issubrgd 14214 rlmvnegg 14227 lidlrsppropdg 14257 crngridl 14292 znzrh 14405 zncrng 14407 |
| Copyright terms: Public domain | W3C validator |