![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveqdr | GIF version |
Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
Ref | Expression |
---|---|
oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
Ref | Expression |
---|---|
oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 5914 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
3 | 2 | adantr 276 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 (class class class)co 5897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-uni 3825 df-br 4019 df-iota 5196 df-fv 5243 df-ov 5900 |
This theorem is referenced by: gsumpropd 12870 grppropstrg 12979 grpsubpropdg 13063 isrngd 13324 crngpropd 13410 isringd 13412 ring1 13428 opprrng 13444 opprrngbg 13445 opprring 13446 opprringbg 13447 opprsubgg 13451 mulgass3 13452 rngidpropdg 13513 invrpropdg 13516 subrngpropd 13580 subrgpropd 13612 sraring 13782 sralmod 13783 sralmod0g 13784 issubrgd 13785 rlmvnegg 13798 lidlrsppropdg 13828 crngridl 13861 zncrng 13957 |
Copyright terms: Public domain | W3C validator |