| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqdr | GIF version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 5939 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | 2 | adantr 276 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 (class class class)co 5922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: gsumpropd 13035 grppropstrg 13151 grpsubpropdg 13236 isrngd 13509 crngpropd 13595 isringd 13597 ring1 13615 opprrng 13633 opprrngbg 13634 opprring 13635 opprringbg 13636 opprsubgg 13640 mulgass3 13641 rngidpropdg 13702 invrpropdg 13705 subrngpropd 13772 subrgpropd 13809 isdomn 13825 sraring 14005 sralmod 14006 sralmod0g 14007 issubrgd 14008 rlmvnegg 14021 lidlrsppropdg 14051 crngridl 14086 znzrh 14199 zncrng 14201 |
| Copyright terms: Public domain | W3C validator |