| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveqdr | GIF version | ||
| Description: Equality of two operations for any two operands. Useful in proofs using *propd theorems. (Contributed by Mario Carneiro, 29-Jun-2015.) |
| Ref | Expression |
|---|---|
| oveqdr.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| Ref | Expression |
|---|---|
| oveqdr | ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqdr.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | 1 | oveqd 6018 | . 2 ⊢ (𝜑 → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | 2 | adantr 276 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 (class class class)co 6001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: gsumpropd 13425 grppropstrg 13552 grpsubpropdg 13637 isrngd 13916 crngpropd 14002 isringd 14004 ring1 14022 opprrng 14040 opprrngbg 14041 opprring 14042 opprringbg 14043 opprsubgg 14047 mulgass3 14048 rngidpropdg 14110 invrpropdg 14113 subrngpropd 14180 subrgpropd 14217 isdomn 14233 sraring 14413 sralmod 14414 sralmod0g 14415 issubrgd 14416 rlmvnegg 14429 lidlrsppropdg 14459 crngridl 14494 znzrh 14607 zncrng 14609 |
| Copyright terms: Public domain | W3C validator |