ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfov GIF version

Theorem nfov 5872
Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
Hypotheses
Ref Expression
nfov.1 𝑥𝐴
nfov.2 𝑥𝐹
nfov.3 𝑥𝐵
Assertion
Ref Expression
nfov 𝑥(𝐴𝐹𝐵)

Proof of Theorem nfov
StepHypRef Expression
1 nfov.1 . . . 4 𝑥𝐴
21a1i 9 . . 3 (⊤ → 𝑥𝐴)
3 nfov.2 . . . 4 𝑥𝐹
43a1i 9 . . 3 (⊤ → 𝑥𝐹)
5 nfov.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfovd 5871 . 2 (⊤ → 𝑥(𝐴𝐹𝐵))
87mptru 1352 1 𝑥(𝐴𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wtru 1344  wnfc 2295  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  csbov123g  5880  ovmpos  5965  ov2gf  5966  ovmpodxf  5967  ovmpodv2  5975  ovi3  5978  nfof  6055  offval2  6065  caucvgprprlemaddq  7649  nfseq  10390  fsumadd  11347  mertenslem2  11477  fprodrec  11570  fproddivapf  11572  oddpwdclemdvds  12102  oddpwdclemndvds  12103  pcmpt  12273  pcmptdvds  12275  cnmpt2t  12933  cnmptcom  12938  fsumcncntop  13196
  Copyright terms: Public domain W3C validator