Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfov | GIF version |
Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
Ref | Expression |
---|---|
nfov.1 | ⊢ Ⅎ𝑥𝐴 |
nfov.2 | ⊢ Ⅎ𝑥𝐹 |
nfov.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfov | ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfov.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | nfov.2 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐹) |
5 | nfov.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfovd 5840 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝐴𝐹𝐵)) |
8 | 7 | mptru 1341 | 1 ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1333 Ⅎwnfc 2283 (class class class)co 5814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rex 2438 df-v 2711 df-un 3102 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-iota 5128 df-fv 5171 df-ov 5817 |
This theorem is referenced by: csbov123g 5849 ovmpos 5934 ov2gf 5935 ovmpodxf 5936 ovmpodv2 5944 ovi3 5947 nfof 6027 offval2 6037 caucvgprprlemaddq 7607 nfseq 10332 fsumadd 11280 mertenslem2 11410 fprodrec 11503 fproddivapf 11505 oddpwdclemdvds 12015 oddpwdclemndvds 12016 cnmpt2t 12632 cnmptcom 12637 fsumcncntop 12895 |
Copyright terms: Public domain | W3C validator |