| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfov | GIF version | ||
| Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
| Ref | Expression |
|---|---|
| nfov.1 | ⊢ Ⅎ𝑥𝐴 |
| nfov.2 | ⊢ Ⅎ𝑥𝐹 |
| nfov.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfov | ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfov.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfov.2 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐹) |
| 5 | nfov.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfovd 5954 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝐴𝐹𝐵)) |
| 8 | 7 | mptru 1373 | 1 ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1365 Ⅎwnfc 2326 (class class class)co 5925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: csbov123g 5964 ovmpos 6050 ov2gf 6051 ovmpodxf 6052 ovmpodv2 6060 ovi3 6064 nfof 6145 offval2 6155 caucvgprprlemaddq 7794 nfseq 10568 fsumadd 11590 mertenslem2 11720 fprodrec 11813 fproddivapf 11815 oddpwdclemdvds 12365 oddpwdclemndvds 12366 pcmpt 12539 pcmptdvds 12541 cnmpt2t 14637 cnmptcom 14642 fsumcncntop 14911 dvmptfsum 15069 elplyd 15085 |
| Copyright terms: Public domain | W3C validator |