Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfov | GIF version |
Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
Ref | Expression |
---|---|
nfov.1 | ⊢ Ⅎ𝑥𝐴 |
nfov.2 | ⊢ Ⅎ𝑥𝐹 |
nfov.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfov | ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfov.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
3 | nfov.2 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐹) |
5 | nfov.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
7 | 2, 4, 6 | nfovd 5882 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝐴𝐹𝐵)) |
8 | 7 | mptru 1357 | 1 ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
Colors of variables: wff set class |
Syntax hints: ⊤wtru 1349 Ⅎwnfc 2299 (class class class)co 5853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: csbov123g 5891 ovmpos 5976 ov2gf 5977 ovmpodxf 5978 ovmpodv2 5986 ovi3 5989 nfof 6066 offval2 6076 caucvgprprlemaddq 7670 nfseq 10411 fsumadd 11369 mertenslem2 11499 fprodrec 11592 fproddivapf 11594 oddpwdclemdvds 12124 oddpwdclemndvds 12125 pcmpt 12295 pcmptdvds 12297 cnmpt2t 13087 cnmptcom 13092 fsumcncntop 13350 |
Copyright terms: Public domain | W3C validator |