ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfov GIF version

Theorem nfov 5883
Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
Hypotheses
Ref Expression
nfov.1 𝑥𝐴
nfov.2 𝑥𝐹
nfov.3 𝑥𝐵
Assertion
Ref Expression
nfov 𝑥(𝐴𝐹𝐵)

Proof of Theorem nfov
StepHypRef Expression
1 nfov.1 . . . 4 𝑥𝐴
21a1i 9 . . 3 (⊤ → 𝑥𝐴)
3 nfov.2 . . . 4 𝑥𝐹
43a1i 9 . . 3 (⊤ → 𝑥𝐹)
5 nfov.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfovd 5882 . 2 (⊤ → 𝑥(𝐴𝐹𝐵))
87mptru 1357 1 𝑥(𝐴𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wtru 1349  wnfc 2299  (class class class)co 5853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856
This theorem is referenced by:  csbov123g  5891  ovmpos  5976  ov2gf  5977  ovmpodxf  5978  ovmpodv2  5986  ovi3  5989  nfof  6066  offval2  6076  caucvgprprlemaddq  7670  nfseq  10411  fsumadd  11369  mertenslem2  11499  fprodrec  11592  fproddivapf  11594  oddpwdclemdvds  12124  oddpwdclemndvds  12125  pcmpt  12295  pcmptdvds  12297  cnmpt2t  13087  cnmptcom  13092  fsumcncntop  13350
  Copyright terms: Public domain W3C validator