| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfov | GIF version | ||
| Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
| Ref | Expression |
|---|---|
| nfov.1 | ⊢ Ⅎ𝑥𝐴 |
| nfov.2 | ⊢ Ⅎ𝑥𝐹 |
| nfov.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfov | ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfov.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfov.2 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐹) |
| 5 | nfov.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfovd 5985 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝐴𝐹𝐵)) |
| 8 | 7 | mptru 1382 | 1 ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1374 Ⅎwnfc 2336 (class class class)co 5956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-iota 5240 df-fv 5287 df-ov 5959 |
| This theorem is referenced by: csbov123g 5995 ovmpos 6081 ov2gf 6082 ovmpodxf 6083 ovmpodv2 6091 ovi3 6095 nfof 6176 offval2 6186 caucvgprprlemaddq 7836 nfseq 10619 fsumadd 11787 mertenslem2 11917 fprodrec 12010 fproddivapf 12012 oddpwdclemdvds 12562 oddpwdclemndvds 12563 pcmpt 12736 pcmptdvds 12738 cnmpt2t 14835 cnmptcom 14840 fsumcncntop 15109 dvmptfsum 15267 elplyd 15283 |
| Copyright terms: Public domain | W3C validator |