| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfov | GIF version | ||
| Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) | 
| Ref | Expression | 
|---|---|
| nfov.1 | ⊢ Ⅎ𝑥𝐴 | 
| nfov.2 | ⊢ Ⅎ𝑥𝐹 | 
| nfov.3 | ⊢ Ⅎ𝑥𝐵 | 
| Ref | Expression | 
|---|---|
| nfov | ⊢ Ⅎ𝑥(𝐴𝐹𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfov.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) | 
| 3 | nfov.2 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐹) | 
| 5 | nfov.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) | 
| 7 | 2, 4, 6 | nfovd 5951 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝐴𝐹𝐵)) | 
| 8 | 7 | mptru 1373 | 1 ⊢ Ⅎ𝑥(𝐴𝐹𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: ⊤wtru 1365 Ⅎwnfc 2326 (class class class)co 5922 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: csbov123g 5960 ovmpos 6046 ov2gf 6047 ovmpodxf 6048 ovmpodv2 6056 ovi3 6060 nfof 6141 offval2 6151 caucvgprprlemaddq 7775 nfseq 10549 fsumadd 11571 mertenslem2 11701 fprodrec 11794 fproddivapf 11796 oddpwdclemdvds 12338 oddpwdclemndvds 12339 pcmpt 12512 pcmptdvds 12514 cnmpt2t 14529 cnmptcom 14534 fsumcncntop 14803 dvmptfsum 14961 elplyd 14977 | 
| Copyright terms: Public domain | W3C validator |