ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfov GIF version

Theorem nfov 5986
Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
Hypotheses
Ref Expression
nfov.1 𝑥𝐴
nfov.2 𝑥𝐹
nfov.3 𝑥𝐵
Assertion
Ref Expression
nfov 𝑥(𝐴𝐹𝐵)

Proof of Theorem nfov
StepHypRef Expression
1 nfov.1 . . . 4 𝑥𝐴
21a1i 9 . . 3 (⊤ → 𝑥𝐴)
3 nfov.2 . . . 4 𝑥𝐹
43a1i 9 . . 3 (⊤ → 𝑥𝐹)
5 nfov.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfovd 5985 . 2 (⊤ → 𝑥(𝐴𝐹𝐵))
87mptru 1382 1 𝑥(𝐴𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wtru 1374  wnfc 2336  (class class class)co 5956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-br 4051  df-iota 5240  df-fv 5287  df-ov 5959
This theorem is referenced by:  csbov123g  5995  ovmpos  6081  ov2gf  6082  ovmpodxf  6083  ovmpodv2  6091  ovi3  6095  nfof  6176  offval2  6186  caucvgprprlemaddq  7836  nfseq  10619  fsumadd  11787  mertenslem2  11917  fprodrec  12010  fproddivapf  12012  oddpwdclemdvds  12562  oddpwdclemndvds  12563  pcmpt  12736  pcmptdvds  12738  cnmpt2t  14835  cnmptcom  14840  fsumcncntop  15109  dvmptfsum  15267  elplyd  15283
  Copyright terms: Public domain W3C validator