| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfov | GIF version | ||
| Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.) |
| Ref | Expression |
|---|---|
| nfov.1 | ⊢ Ⅎ𝑥𝐴 |
| nfov.2 | ⊢ Ⅎ𝑥𝐹 |
| nfov.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfov | ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfov.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
| 3 | nfov.2 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐹) |
| 5 | nfov.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐵) |
| 7 | 2, 4, 6 | nfovd 6029 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝐴𝐹𝐵)) |
| 8 | 7 | mptru 1404 | 1 ⊢ Ⅎ𝑥(𝐴𝐹𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ⊤wtru 1396 Ⅎwnfc 2359 (class class class)co 6000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: csbov123g 6039 ovmpos 6127 ov2gf 6128 ovmpodxf 6129 ovmpodv2 6137 ovi3 6141 nfof 6222 offval2 6232 caucvgprprlemaddq 7891 nfseq 10674 fsumadd 11912 mertenslem2 12042 fprodrec 12135 fproddivapf 12137 oddpwdclemdvds 12687 oddpwdclemndvds 12688 pcmpt 12861 pcmptdvds 12863 cnmpt2t 14961 cnmptcom 14966 fsumcncntop 15235 dvmptfsum 15393 elplyd 15409 |
| Copyright terms: Public domain | W3C validator |