ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfov GIF version

Theorem nfov 5908
Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
Hypotheses
Ref Expression
nfov.1 𝑥𝐴
nfov.2 𝑥𝐹
nfov.3 𝑥𝐵
Assertion
Ref Expression
nfov 𝑥(𝐴𝐹𝐵)

Proof of Theorem nfov
StepHypRef Expression
1 nfov.1 . . . 4 𝑥𝐴
21a1i 9 . . 3 (⊤ → 𝑥𝐴)
3 nfov.2 . . . 4 𝑥𝐹
43a1i 9 . . 3 (⊤ → 𝑥𝐹)
5 nfov.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfovd 5907 . 2 (⊤ → 𝑥(𝐴𝐹𝐵))
87mptru 1362 1 𝑥(𝐴𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wtru 1354  wnfc 2306  (class class class)co 5878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-iota 5180  df-fv 5226  df-ov 5881
This theorem is referenced by:  csbov123g  5916  ovmpos  6001  ov2gf  6002  ovmpodxf  6003  ovmpodv2  6011  ovi3  6014  nfof  6091  offval2  6101  caucvgprprlemaddq  7710  nfseq  10458  fsumadd  11417  mertenslem2  11547  fprodrec  11640  fproddivapf  11642  oddpwdclemdvds  12173  oddpwdclemndvds  12174  pcmpt  12344  pcmptdvds  12346  cnmpt2t  13933  cnmptcom  13938  fsumcncntop  14196
  Copyright terms: Public domain W3C validator