ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfov GIF version

Theorem nfov 6030
Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004.)
Hypotheses
Ref Expression
nfov.1 𝑥𝐴
nfov.2 𝑥𝐹
nfov.3 𝑥𝐵
Assertion
Ref Expression
nfov 𝑥(𝐴𝐹𝐵)

Proof of Theorem nfov
StepHypRef Expression
1 nfov.1 . . . 4 𝑥𝐴
21a1i 9 . . 3 (⊤ → 𝑥𝐴)
3 nfov.2 . . . 4 𝑥𝐹
43a1i 9 . . 3 (⊤ → 𝑥𝐹)
5 nfov.3 . . . 4 𝑥𝐵
65a1i 9 . . 3 (⊤ → 𝑥𝐵)
72, 4, 6nfovd 6029 . 2 (⊤ → 𝑥(𝐴𝐹𝐵))
87mptru 1404 1 𝑥(𝐴𝐹𝐵)
Colors of variables: wff set class
Syntax hints:  wtru 1396  wnfc 2359  (class class class)co 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by:  csbov123g  6039  ovmpos  6127  ov2gf  6128  ovmpodxf  6129  ovmpodv2  6137  ovi3  6141  nfof  6222  offval2  6232  caucvgprprlemaddq  7891  nfseq  10674  fsumadd  11912  mertenslem2  12042  fprodrec  12135  fproddivapf  12137  oddpwdclemdvds  12687  oddpwdclemndvds  12688  pcmpt  12861  pcmptdvds  12863  cnmpt2t  14961  cnmptcom  14966  fsumcncntop  15235  dvmptfsum  15393  elplyd  15409
  Copyright terms: Public domain W3C validator