| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0 | GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 9252 | . 2 ⊢ ℕ ⊆ ℕ0 | |
| 2 | 1 | sseli 3179 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℕcn 8990 ℕ0cn0 9249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-n0 9250 |
| This theorem is referenced by: nnnn0i 9257 elnnnn0b 9293 elnnnn0c 9294 elnn0z 9339 elz2 9397 nn0ind-raph 9443 zindd 9444 fzo1fzo0n0 10259 ubmelfzo 10276 elfzom1elp1fzo 10278 fzo0sn0fzo1 10297 modqmulnn 10434 expnegap0 10639 expcllem 10642 expcl2lemap 10643 expap0 10661 expeq0 10662 mulexpzap 10671 expnlbnd 10756 apexp1 10810 facdiv 10830 faclbnd 10833 faclbnd3 10835 faclbnd6 10836 resqrexlemlo 11178 absexpzap 11245 nnf1o 11541 summodclem2a 11546 fsum3 11552 arisum 11663 expcnvap0 11667 expcnv 11669 geo2sum 11679 geo2lim 11681 geoisum1c 11685 0.999... 11686 mertenslem2 11701 fprodseq 11748 fprodfac 11780 ef0lem 11825 ege2le3 11836 efaddlem 11839 efexp 11847 dvdsmodexp 11960 nn0enne 12067 nnehalf 12069 nno 12071 nn0o 12072 divalg2 12091 ndvdssub 12095 gcddiv 12186 gcdmultiple 12187 gcdmultiplez 12188 rpmulgcd 12193 rplpwr 12194 dvdssqlem 12197 eucalgf 12223 1nprm 12282 isprm6 12315 prmdvdsexp 12316 pw2dvds 12334 oddpwdc 12342 phicl2 12382 phibndlem 12384 phiprmpw 12390 crth 12392 hashgcdlem 12406 phisum 12409 pythagtriplem10 12438 pythagtriplem6 12439 pythagtriplem7 12440 pythagtriplem12 12444 pythagtriplem14 12446 pclemub 12456 pcexp 12478 pcid 12493 pcprod 12515 pcbc 12520 prmpwdvds 12524 infpnlem1 12528 infpnlem2 12529 prmunb 12531 1arith 12536 ennnfonelemjn 12619 ghmmulg 13386 znf1o 14207 znfi 14211 znhash 14212 znidom 14213 znidomb 14214 znrrg 14216 dvexp 14947 plycolemc 14994 logbgcd1irr 15203 1sgm2ppw 15231 lgsval4a 15263 gausslemma2dlem0c 15292 gausslemma2dlem0d 15293 gausslemma2dlem6 15308 2lgslem1a1 15327 2lgslem1c 15331 2lgslem3a1 15338 2lgslem3b1 15339 2lgslem3c1 15340 2lgslem3d1 15341 |
| Copyright terms: Public domain | W3C validator |