![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnn0 | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 9243 | . 2 ⊢ ℕ ⊆ ℕ0 | |
2 | 1 | sseli 3175 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℕcn 8982 ℕ0cn0 9240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-n0 9241 |
This theorem is referenced by: nnnn0i 9248 elnnnn0b 9284 elnnnn0c 9285 elnn0z 9330 elz2 9388 nn0ind-raph 9434 zindd 9435 fzo1fzo0n0 10250 ubmelfzo 10267 elfzom1elp1fzo 10269 fzo0sn0fzo1 10288 modqmulnn 10413 expnegap0 10618 expcllem 10621 expcl2lemap 10622 expap0 10640 expeq0 10641 mulexpzap 10650 expnlbnd 10735 apexp1 10789 facdiv 10809 faclbnd 10812 faclbnd3 10814 faclbnd6 10815 resqrexlemlo 11157 absexpzap 11224 nnf1o 11519 summodclem2a 11524 fsum3 11530 arisum 11641 expcnvap0 11645 expcnv 11647 geo2sum 11657 geo2lim 11659 geoisum1c 11663 0.999... 11664 mertenslem2 11679 fprodseq 11726 fprodfac 11758 ef0lem 11803 ege2le3 11814 efaddlem 11817 efexp 11825 dvdsmodexp 11938 nn0enne 12043 nnehalf 12045 nno 12047 nn0o 12048 divalg2 12067 ndvdssub 12071 gcddiv 12156 gcdmultiple 12157 gcdmultiplez 12158 rpmulgcd 12163 rplpwr 12164 dvdssqlem 12167 eucalgf 12193 1nprm 12252 isprm6 12285 prmdvdsexp 12286 pw2dvds 12304 oddpwdc 12312 phicl2 12352 phibndlem 12354 phiprmpw 12360 crth 12362 hashgcdlem 12376 phisum 12378 pythagtriplem10 12407 pythagtriplem6 12408 pythagtriplem7 12409 pythagtriplem12 12413 pythagtriplem14 12415 pclemub 12425 pcexp 12447 pcid 12462 pcprod 12484 pcbc 12489 prmpwdvds 12493 infpnlem1 12497 infpnlem2 12498 prmunb 12500 1arith 12505 ennnfonelemjn 12559 ghmmulg 13326 znf1o 14139 znfi 14143 znhash 14144 znidom 14145 znidomb 14146 znrrg 14148 dvexp 14860 logbgcd1irr 15099 lgsval4a 15138 gausslemma2dlem0c 15167 gausslemma2dlem0d 15168 gausslemma2dlem6 15183 |
Copyright terms: Public domain | W3C validator |