| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0 | GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 9311 | . 2 ⊢ ℕ ⊆ ℕ0 | |
| 2 | 1 | sseli 3191 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ℕcn 9049 ℕ0cn0 9308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-n0 9309 |
| This theorem is referenced by: nnnn0i 9316 elnnnn0b 9352 elnnnn0c 9353 elnn0z 9398 elz2 9457 nn0ind-raph 9503 zindd 9504 fzo1fzo0n0 10320 ubmelfzo 10342 elfzom1elp1fzo 10344 fzo0sn0fzo1 10363 modqmulnn 10500 expnegap0 10705 expcllem 10708 expcl2lemap 10709 expap0 10727 expeq0 10728 mulexpzap 10737 expnlbnd 10822 apexp1 10876 facdiv 10896 faclbnd 10899 faclbnd3 10901 faclbnd6 10902 pfxn0 11153 resqrexlemlo 11374 absexpzap 11441 nnf1o 11737 summodclem2a 11742 fsum3 11748 arisum 11859 expcnvap0 11863 expcnv 11865 geo2sum 11875 geo2lim 11877 geoisum1c 11881 0.999... 11882 mertenslem2 11897 fprodseq 11944 fprodfac 11976 ef0lem 12021 ege2le3 12032 efaddlem 12035 efexp 12043 dvdsmodexp 12156 nn0enne 12263 nnehalf 12265 nno 12267 nn0o 12268 divalg2 12287 ndvdssub 12291 gcddiv 12390 gcdmultiple 12391 gcdmultiplez 12392 rpmulgcd 12397 rplpwr 12398 dvdssqlem 12401 eucalgf 12427 1nprm 12486 isprm6 12519 prmdvdsexp 12520 pw2dvds 12538 oddpwdc 12546 phicl2 12586 phibndlem 12588 phiprmpw 12594 crth 12596 hashgcdlem 12610 phisum 12613 pythagtriplem10 12642 pythagtriplem6 12643 pythagtriplem7 12644 pythagtriplem12 12648 pythagtriplem14 12650 pclemub 12660 pcexp 12682 pcid 12697 pcprod 12719 pcbc 12724 prmpwdvds 12728 infpnlem1 12732 infpnlem2 12733 prmunb 12735 1arith 12740 ennnfonelemjn 12823 ghmmulg 13642 znf1o 14463 znfi 14467 znhash 14468 znidom 14469 znidomb 14470 znrrg 14472 dvexp 15233 plycolemc 15280 logbgcd1irr 15489 1sgm2ppw 15517 lgsval4a 15549 gausslemma2dlem0c 15578 gausslemma2dlem0d 15579 gausslemma2dlem6 15594 2lgslem1a1 15613 2lgslem1c 15617 2lgslem3a1 15624 2lgslem3b1 15625 2lgslem3c1 15626 2lgslem3d1 15627 |
| Copyright terms: Public domain | W3C validator |