Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnn0 | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 9138 | . 2 ⊢ ℕ ⊆ ℕ0 | |
2 | 1 | sseli 3143 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℕcn 8878 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-n0 9136 |
This theorem is referenced by: nnnn0i 9143 elnnnn0b 9179 elnnnn0c 9180 elnn0z 9225 elz2 9283 nn0ind-raph 9329 zindd 9330 fzo1fzo0n0 10139 ubmelfzo 10156 elfzom1elp1fzo 10158 fzo0sn0fzo1 10177 modqmulnn 10298 expnegap0 10484 expcllem 10487 expcl2lemap 10488 expap0 10506 expeq0 10507 mulexpzap 10516 expnlbnd 10600 apexp1 10652 facdiv 10672 faclbnd 10675 faclbnd3 10677 faclbnd6 10678 resqrexlemlo 10977 absexpzap 11044 nnf1o 11339 summodclem2a 11344 fsum3 11350 arisum 11461 expcnvap0 11465 expcnv 11467 geo2sum 11477 geo2lim 11479 geoisum1c 11483 0.999... 11484 mertenslem2 11499 fprodseq 11546 fprodfac 11578 ef0lem 11623 ege2le3 11634 efaddlem 11637 efexp 11645 dvdsmodexp 11757 nn0enne 11861 nnehalf 11863 nno 11865 nn0o 11866 divalg2 11885 ndvdssub 11889 gcddiv 11974 gcdmultiple 11975 gcdmultiplez 11976 rpmulgcd 11981 rplpwr 11982 dvdssqlem 11985 eucalgf 12009 1nprm 12068 isprm6 12101 prmdvdsexp 12102 pw2dvds 12120 oddpwdc 12128 phicl2 12168 phibndlem 12170 phiprmpw 12176 crth 12178 hashgcdlem 12192 phisum 12194 pythagtriplem10 12223 pythagtriplem6 12224 pythagtriplem7 12225 pythagtriplem12 12229 pythagtriplem14 12231 pclemub 12241 pcexp 12263 pcid 12277 pcprod 12298 pcbc 12303 prmpwdvds 12307 infpnlem1 12311 infpnlem2 12312 prmunb 12314 1arith 12319 ennnfonelemjn 12357 dvexp 13469 logbgcd1irr 13679 lgsval4a 13717 |
Copyright terms: Public domain | W3C validator |