![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnn0 | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 9246 | . 2 ⊢ ℕ ⊆ ℕ0 | |
2 | 1 | sseli 3176 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℕcn 8984 ℕ0cn0 9243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-n0 9244 |
This theorem is referenced by: nnnn0i 9251 elnnnn0b 9287 elnnnn0c 9288 elnn0z 9333 elz2 9391 nn0ind-raph 9437 zindd 9438 fzo1fzo0n0 10253 ubmelfzo 10270 elfzom1elp1fzo 10272 fzo0sn0fzo1 10291 modqmulnn 10416 expnegap0 10621 expcllem 10624 expcl2lemap 10625 expap0 10643 expeq0 10644 mulexpzap 10653 expnlbnd 10738 apexp1 10792 facdiv 10812 faclbnd 10815 faclbnd3 10817 faclbnd6 10818 resqrexlemlo 11160 absexpzap 11227 nnf1o 11522 summodclem2a 11527 fsum3 11533 arisum 11644 expcnvap0 11648 expcnv 11650 geo2sum 11660 geo2lim 11662 geoisum1c 11666 0.999... 11667 mertenslem2 11682 fprodseq 11729 fprodfac 11761 ef0lem 11806 ege2le3 11817 efaddlem 11820 efexp 11828 dvdsmodexp 11941 nn0enne 12046 nnehalf 12048 nno 12050 nn0o 12051 divalg2 12070 ndvdssub 12074 gcddiv 12159 gcdmultiple 12160 gcdmultiplez 12161 rpmulgcd 12166 rplpwr 12167 dvdssqlem 12170 eucalgf 12196 1nprm 12255 isprm6 12288 prmdvdsexp 12289 pw2dvds 12307 oddpwdc 12315 phicl2 12355 phibndlem 12357 phiprmpw 12363 crth 12365 hashgcdlem 12379 phisum 12381 pythagtriplem10 12410 pythagtriplem6 12411 pythagtriplem7 12412 pythagtriplem12 12416 pythagtriplem14 12418 pclemub 12428 pcexp 12450 pcid 12465 pcprod 12487 pcbc 12492 prmpwdvds 12496 infpnlem1 12500 infpnlem2 12501 prmunb 12503 1arith 12508 ennnfonelemjn 12562 ghmmulg 13329 znf1o 14150 znfi 14154 znhash 14155 znidom 14156 znidomb 14157 znrrg 14159 dvexp 14890 plycolemc 14936 logbgcd1irr 15140 lgsval4a 15179 gausslemma2dlem0c 15208 gausslemma2dlem0d 15209 gausslemma2dlem6 15224 2lgslem1a1 15243 2lgslem1c 15247 2lgslem3a1 15254 2lgslem3b1 15255 2lgslem3c1 15256 2lgslem3d1 15257 |
Copyright terms: Public domain | W3C validator |