Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnn0 | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 9152 | . 2 ⊢ ℕ ⊆ ℕ0 | |
2 | 1 | sseli 3149 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 ℕcn 8892 ℕ0cn0 9149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-n0 9150 |
This theorem is referenced by: nnnn0i 9157 elnnnn0b 9193 elnnnn0c 9194 elnn0z 9239 elz2 9297 nn0ind-raph 9343 zindd 9344 fzo1fzo0n0 10153 ubmelfzo 10170 elfzom1elp1fzo 10172 fzo0sn0fzo1 10191 modqmulnn 10312 expnegap0 10498 expcllem 10501 expcl2lemap 10502 expap0 10520 expeq0 10521 mulexpzap 10530 expnlbnd 10614 apexp1 10666 facdiv 10686 faclbnd 10689 faclbnd3 10691 faclbnd6 10692 resqrexlemlo 10990 absexpzap 11057 nnf1o 11352 summodclem2a 11357 fsum3 11363 arisum 11474 expcnvap0 11478 expcnv 11480 geo2sum 11490 geo2lim 11492 geoisum1c 11496 0.999... 11497 mertenslem2 11512 fprodseq 11559 fprodfac 11591 ef0lem 11636 ege2le3 11647 efaddlem 11650 efexp 11658 dvdsmodexp 11770 nn0enne 11874 nnehalf 11876 nno 11878 nn0o 11879 divalg2 11898 ndvdssub 11902 gcddiv 11987 gcdmultiple 11988 gcdmultiplez 11989 rpmulgcd 11994 rplpwr 11995 dvdssqlem 11998 eucalgf 12022 1nprm 12081 isprm6 12114 prmdvdsexp 12115 pw2dvds 12133 oddpwdc 12141 phicl2 12181 phibndlem 12183 phiprmpw 12189 crth 12191 hashgcdlem 12205 phisum 12207 pythagtriplem10 12236 pythagtriplem6 12237 pythagtriplem7 12238 pythagtriplem12 12242 pythagtriplem14 12244 pclemub 12254 pcexp 12276 pcid 12290 pcprod 12311 pcbc 12316 prmpwdvds 12320 infpnlem1 12324 infpnlem2 12325 prmunb 12327 1arith 12332 ennnfonelemjn 12370 dvexp 13755 logbgcd1irr 13965 lgsval4a 14003 |
Copyright terms: Public domain | W3C validator |