Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnn0 | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 9113 | . 2 ⊢ ℕ ⊆ ℕ0 | |
2 | 1 | sseli 3137 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℕcn 8853 ℕ0cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-n0 9111 |
This theorem is referenced by: nnnn0i 9118 elnnnn0b 9154 elnnnn0c 9155 elnn0z 9200 elz2 9258 nn0ind-raph 9304 zindd 9305 fzo1fzo0n0 10114 ubmelfzo 10131 elfzom1elp1fzo 10133 fzo0sn0fzo1 10152 modqmulnn 10273 expnegap0 10459 expcllem 10462 expcl2lemap 10463 expap0 10481 expeq0 10482 mulexpzap 10491 expnlbnd 10575 apexp1 10627 facdiv 10647 faclbnd 10650 faclbnd3 10652 faclbnd6 10653 resqrexlemlo 10951 absexpzap 11018 nnf1o 11313 summodclem2a 11318 fsum3 11324 arisum 11435 expcnvap0 11439 expcnv 11441 geo2sum 11451 geo2lim 11453 geoisum1c 11457 0.999... 11458 mertenslem2 11473 fprodseq 11520 fprodfac 11552 ef0lem 11597 ege2le3 11608 efaddlem 11611 efexp 11619 dvdsmodexp 11731 nn0enne 11835 nnehalf 11837 nno 11839 nn0o 11840 divalg2 11859 ndvdssub 11863 gcddiv 11948 gcdmultiple 11949 gcdmultiplez 11950 rpmulgcd 11955 rplpwr 11956 dvdssqlem 11959 eucalgf 11983 1nprm 12042 isprm6 12075 prmdvdsexp 12076 pw2dvds 12094 oddpwdc 12102 phicl2 12142 phibndlem 12144 phiprmpw 12150 crth 12152 hashgcdlem 12166 phisum 12168 pythagtriplem10 12197 pythagtriplem6 12198 pythagtriplem7 12199 pythagtriplem12 12203 pythagtriplem14 12205 pclemub 12215 pcexp 12237 pcid 12251 pcprod 12272 pcbc 12277 prmpwdvds 12281 infpnlem1 12285 infpnlem2 12286 prmunb 12288 1arith 12293 ennnfonelemjn 12331 dvexp 13275 logbgcd1irr 13485 lgsval4a 13523 |
Copyright terms: Public domain | W3C validator |