| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0 | GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 9380 | . 2 ⊢ ℕ ⊆ ℕ0 | |
| 2 | 1 | sseli 3220 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℕcn 9118 ℕ0cn0 9377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-n0 9378 |
| This theorem is referenced by: nnnn0i 9385 elnnnn0b 9421 elnnnn0c 9422 elnn0z 9467 elz2 9526 nn0ind-raph 9572 zindd 9573 fzo1fzo0n0 10391 ubmelfzo 10414 elfzom1elp1fzo 10416 fzo0sn0fzo1 10435 modqmulnn 10572 expnegap0 10777 expcllem 10780 expcl2lemap 10781 expap0 10799 expeq0 10800 mulexpzap 10809 expnlbnd 10894 apexp1 10948 facdiv 10968 faclbnd 10971 faclbnd3 10973 faclbnd6 10974 pfxn0 11228 resqrexlemlo 11532 absexpzap 11599 nnf1o 11895 summodclem2a 11900 fsum3 11906 arisum 12017 expcnvap0 12021 expcnv 12023 geo2sum 12033 geo2lim 12035 geoisum1c 12039 0.999... 12040 mertenslem2 12055 fprodseq 12102 fprodfac 12134 ef0lem 12179 ege2le3 12190 efaddlem 12193 efexp 12201 dvdsmodexp 12314 nn0enne 12421 nnehalf 12423 nno 12425 nn0o 12426 divalg2 12445 ndvdssub 12449 gcddiv 12548 gcdmultiple 12549 gcdmultiplez 12550 rpmulgcd 12555 rplpwr 12556 dvdssqlem 12559 eucalgf 12585 1nprm 12644 isprm6 12677 prmdvdsexp 12678 pw2dvds 12696 oddpwdc 12704 phicl2 12744 phibndlem 12746 phiprmpw 12752 crth 12754 hashgcdlem 12768 phisum 12771 pythagtriplem10 12800 pythagtriplem6 12801 pythagtriplem7 12802 pythagtriplem12 12806 pythagtriplem14 12808 pclemub 12818 pcexp 12840 pcid 12855 pcprod 12877 pcbc 12882 prmpwdvds 12886 infpnlem1 12890 infpnlem2 12891 prmunb 12893 1arith 12898 ennnfonelemjn 12981 ghmmulg 13801 znf1o 14623 znfi 14627 znhash 14628 znidom 14629 znidomb 14630 znrrg 14632 dvexp 15393 plycolemc 15440 logbgcd1irr 15649 1sgm2ppw 15677 lgsval4a 15709 gausslemma2dlem0c 15738 gausslemma2dlem0d 15739 gausslemma2dlem6 15754 2lgslem1a1 15773 2lgslem1c 15777 2lgslem3a1 15784 2lgslem3b1 15785 2lgslem3c1 15786 2lgslem3d1 15787 |
| Copyright terms: Public domain | W3C validator |