| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0 | GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 9360 | . 2 ⊢ ℕ ⊆ ℕ0 | |
| 2 | 1 | sseli 3220 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ℕcn 9098 ℕ0cn0 9357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-n0 9358 |
| This theorem is referenced by: nnnn0i 9365 elnnnn0b 9401 elnnnn0c 9402 elnn0z 9447 elz2 9506 nn0ind-raph 9552 zindd 9553 fzo1fzo0n0 10371 ubmelfzo 10393 elfzom1elp1fzo 10395 fzo0sn0fzo1 10414 modqmulnn 10551 expnegap0 10756 expcllem 10759 expcl2lemap 10760 expap0 10778 expeq0 10779 mulexpzap 10788 expnlbnd 10873 apexp1 10927 facdiv 10947 faclbnd 10950 faclbnd3 10952 faclbnd6 10953 pfxn0 11206 resqrexlemlo 11510 absexpzap 11577 nnf1o 11873 summodclem2a 11878 fsum3 11884 arisum 11995 expcnvap0 11999 expcnv 12001 geo2sum 12011 geo2lim 12013 geoisum1c 12017 0.999... 12018 mertenslem2 12033 fprodseq 12080 fprodfac 12112 ef0lem 12157 ege2le3 12168 efaddlem 12171 efexp 12179 dvdsmodexp 12292 nn0enne 12399 nnehalf 12401 nno 12403 nn0o 12404 divalg2 12423 ndvdssub 12427 gcddiv 12526 gcdmultiple 12527 gcdmultiplez 12528 rpmulgcd 12533 rplpwr 12534 dvdssqlem 12537 eucalgf 12563 1nprm 12622 isprm6 12655 prmdvdsexp 12656 pw2dvds 12674 oddpwdc 12682 phicl2 12722 phibndlem 12724 phiprmpw 12730 crth 12732 hashgcdlem 12746 phisum 12749 pythagtriplem10 12778 pythagtriplem6 12779 pythagtriplem7 12780 pythagtriplem12 12784 pythagtriplem14 12786 pclemub 12796 pcexp 12818 pcid 12833 pcprod 12855 pcbc 12860 prmpwdvds 12864 infpnlem1 12868 infpnlem2 12869 prmunb 12871 1arith 12876 ennnfonelemjn 12959 ghmmulg 13779 znf1o 14600 znfi 14604 znhash 14605 znidom 14606 znidomb 14607 znrrg 14609 dvexp 15370 plycolemc 15417 logbgcd1irr 15626 1sgm2ppw 15654 lgsval4a 15686 gausslemma2dlem0c 15715 gausslemma2dlem0d 15716 gausslemma2dlem6 15731 2lgslem1a1 15750 2lgslem1c 15754 2lgslem3a1 15761 2lgslem3b1 15762 2lgslem3c1 15763 2lgslem3d1 15764 |
| Copyright terms: Public domain | W3C validator |