| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnnn0 | GIF version | ||
| Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nnnn0 | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnssnn0 9269 | . 2 ⊢ ℕ ⊆ ℕ0 | |
| 2 | 1 | sseli 3180 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ℕcn 9007 ℕ0cn0 9266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-n0 9267 |
| This theorem is referenced by: nnnn0i 9274 elnnnn0b 9310 elnnnn0c 9311 elnn0z 9356 elz2 9414 nn0ind-raph 9460 zindd 9461 fzo1fzo0n0 10276 ubmelfzo 10293 elfzom1elp1fzo 10295 fzo0sn0fzo1 10314 modqmulnn 10451 expnegap0 10656 expcllem 10659 expcl2lemap 10660 expap0 10678 expeq0 10679 mulexpzap 10688 expnlbnd 10773 apexp1 10827 facdiv 10847 faclbnd 10850 faclbnd3 10852 faclbnd6 10853 resqrexlemlo 11195 absexpzap 11262 nnf1o 11558 summodclem2a 11563 fsum3 11569 arisum 11680 expcnvap0 11684 expcnv 11686 geo2sum 11696 geo2lim 11698 geoisum1c 11702 0.999... 11703 mertenslem2 11718 fprodseq 11765 fprodfac 11797 ef0lem 11842 ege2le3 11853 efaddlem 11856 efexp 11864 dvdsmodexp 11977 nn0enne 12084 nnehalf 12086 nno 12088 nn0o 12089 divalg2 12108 ndvdssub 12112 gcddiv 12211 gcdmultiple 12212 gcdmultiplez 12213 rpmulgcd 12218 rplpwr 12219 dvdssqlem 12222 eucalgf 12248 1nprm 12307 isprm6 12340 prmdvdsexp 12341 pw2dvds 12359 oddpwdc 12367 phicl2 12407 phibndlem 12409 phiprmpw 12415 crth 12417 hashgcdlem 12431 phisum 12434 pythagtriplem10 12463 pythagtriplem6 12464 pythagtriplem7 12465 pythagtriplem12 12469 pythagtriplem14 12471 pclemub 12481 pcexp 12503 pcid 12518 pcprod 12540 pcbc 12545 prmpwdvds 12549 infpnlem1 12553 infpnlem2 12554 prmunb 12556 1arith 12561 ennnfonelemjn 12644 ghmmulg 13462 znf1o 14283 znfi 14287 znhash 14288 znidom 14289 znidomb 14290 znrrg 14292 dvexp 15031 plycolemc 15078 logbgcd1irr 15287 1sgm2ppw 15315 lgsval4a 15347 gausslemma2dlem0c 15376 gausslemma2dlem0d 15377 gausslemma2dlem6 15392 2lgslem1a1 15411 2lgslem1c 15415 2lgslem3a1 15422 2lgslem3b1 15423 2lgslem3c1 15424 2lgslem3d1 15425 |
| Copyright terms: Public domain | W3C validator |