![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnn0d | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnnn0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnnn0d | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 9197 | . 2 ⊢ ℕ ⊆ ℕ0 | |
2 | nnnn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
3 | 1, 2 | sselid 3168 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 ℕcn 8937 ℕ0cn0 9194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-n0 9195 |
This theorem is referenced by: nn0ge2m1nn0 9255 nnzd 9392 eluzge2nn0 9587 modsumfzodifsn 10414 addmodlteq 10416 expnnval 10541 expgt1 10576 expaddzaplem 10581 expaddzap 10582 expmulzap 10584 expnbnd 10662 facwordi 10738 faclbnd 10739 facavg 10744 bcm1k 10758 bcval5 10761 1elfz0hash 10804 resqrexlemnm 11045 resqrexlemcvg 11046 summodc 11409 zsumdc 11410 bcxmas 11515 geo2sum 11540 geo2lim 11542 geoisum1 11545 geoisum1c 11546 cvgratnnlembern 11549 cvgratnnlemsumlt 11554 cvgratnnlemfm 11555 mertenslemi1 11561 prodmodclem3 11601 prodmodclem2a 11602 zproddc 11605 fprodseq 11609 eftabs 11682 efcllemp 11684 eftlub 11716 eirraplem 11802 dvdsfac 11884 divalglemnqt 11943 divalglemeunn 11944 gcdval 11978 gcdcl 11985 dvdsgcdidd 12013 mulgcd 12035 rplpwr 12046 rppwr 12047 lcmcl 12090 lcmgcdnn 12100 nprmdvds1 12158 isprm5lem 12159 rpexp 12171 pw2dvdslemn 12183 sqpweven 12193 2sqpwodd 12194 nn0sqrtelqelz 12224 phiprmpw 12240 crth 12242 eulerthlema 12248 eulerthlemth 12250 eulerth 12251 fermltl 12252 odzcllem 12260 odzdvds 12263 odzphi 12264 modprm0 12272 prm23lt5 12281 pythagtriplem6 12288 pythagtriplem7 12289 pcprmpw2 12350 dvdsprmpweqle 12354 pcprod 12362 pcfac 12366 pcbc 12367 expnprm 12369 pockthlem 12372 pockthg 12373 prmunb 12378 mul4sqlem 12409 logbgcd1irraplemexp 14770 lgslem1 14785 lgsval 14789 lgsfvalg 14790 lgsval2lem 14795 lgsvalmod 14804 lgsmod 14811 lgsdirprm 14819 lgsne0 14823 lgseisenlem1 14834 lgseisenlem2 14835 m1lgs 14836 2sqlem3 14848 cvgcmp2nlemabs 15165 trilpolemlt1 15174 redcwlpolemeq1 15187 nconstwlpolem0 15196 |
Copyright terms: Public domain | W3C validator |