Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnn0d | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnnn0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnnn0d | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 9113 | . 2 ⊢ ℕ ⊆ ℕ0 | |
2 | nnnn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
3 | 1, 2 | sselid 3139 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℕcn 8853 ℕ0cn0 9110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-n0 9111 |
This theorem is referenced by: nn0ge2m1nn0 9171 nnzd 9308 eluzge2nn0 9503 modsumfzodifsn 10327 addmodlteq 10329 expnnval 10454 expgt1 10489 expaddzaplem 10494 expaddzap 10495 expmulzap 10497 expnbnd 10574 facwordi 10649 faclbnd 10650 facavg 10655 bcm1k 10669 bcval5 10672 1elfz0hash 10715 resqrexlemnm 10956 resqrexlemcvg 10957 summodc 11320 zsumdc 11321 bcxmas 11426 geo2sum 11451 geo2lim 11453 geoisum1 11456 geoisum1c 11457 cvgratnnlembern 11460 cvgratnnlemsumlt 11465 cvgratnnlemfm 11466 mertenslemi1 11472 prodmodclem3 11512 prodmodclem2a 11513 zproddc 11516 fprodseq 11520 eftabs 11593 efcllemp 11595 eftlub 11627 eirraplem 11713 dvdsfac 11794 divalglemnqt 11853 divalglemeunn 11854 gcdval 11888 gcdcl 11895 dvdsgcdidd 11923 mulgcd 11945 rplpwr 11956 rppwr 11957 lcmcl 12000 lcmgcdnn 12010 nprmdvds1 12068 isprm5lem 12069 rpexp 12081 pw2dvdslemn 12093 sqpweven 12103 2sqpwodd 12104 nn0sqrtelqelz 12134 phiprmpw 12150 crth 12152 eulerthlema 12158 eulerthlemth 12160 eulerth 12161 fermltl 12162 odzcllem 12170 odzdvds 12173 odzphi 12174 modprm0 12182 prm23lt5 12191 pythagtriplem6 12198 pythagtriplem7 12199 pcprmpw2 12260 dvdsprmpweqle 12264 pcprod 12272 pcfac 12276 pcbc 12277 expnprm 12279 pockthlem 12282 pockthg 12283 prmunb 12288 mul4sqlem 12319 logbgcd1irraplemexp 13486 lgslem1 13501 lgsval 13505 lgsfvalg 13506 lgsval2lem 13511 lgsvalmod 13520 lgsmod 13527 lgsdirprm 13535 lgsne0 13539 2sqlem3 13553 cvgcmp2nlemabs 13871 trilpolemlt1 13880 redcwlpolemeq1 13893 nconstwlpolem0 13901 |
Copyright terms: Public domain | W3C validator |