Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnnn0d | GIF version |
Description: A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnnn0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nnnn0d | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 9138 | . 2 ⊢ ℕ ⊆ ℕ0 | |
2 | nnnn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
3 | 1, 2 | sselid 3145 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 ℕcn 8878 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-n0 9136 |
This theorem is referenced by: nn0ge2m1nn0 9196 nnzd 9333 eluzge2nn0 9528 modsumfzodifsn 10352 addmodlteq 10354 expnnval 10479 expgt1 10514 expaddzaplem 10519 expaddzap 10520 expmulzap 10522 expnbnd 10599 facwordi 10674 faclbnd 10675 facavg 10680 bcm1k 10694 bcval5 10697 1elfz0hash 10741 resqrexlemnm 10982 resqrexlemcvg 10983 summodc 11346 zsumdc 11347 bcxmas 11452 geo2sum 11477 geo2lim 11479 geoisum1 11482 geoisum1c 11483 cvgratnnlembern 11486 cvgratnnlemsumlt 11491 cvgratnnlemfm 11492 mertenslemi1 11498 prodmodclem3 11538 prodmodclem2a 11539 zproddc 11542 fprodseq 11546 eftabs 11619 efcllemp 11621 eftlub 11653 eirraplem 11739 dvdsfac 11820 divalglemnqt 11879 divalglemeunn 11880 gcdval 11914 gcdcl 11921 dvdsgcdidd 11949 mulgcd 11971 rplpwr 11982 rppwr 11983 lcmcl 12026 lcmgcdnn 12036 nprmdvds1 12094 isprm5lem 12095 rpexp 12107 pw2dvdslemn 12119 sqpweven 12129 2sqpwodd 12130 nn0sqrtelqelz 12160 phiprmpw 12176 crth 12178 eulerthlema 12184 eulerthlemth 12186 eulerth 12187 fermltl 12188 odzcllem 12196 odzdvds 12199 odzphi 12200 modprm0 12208 prm23lt5 12217 pythagtriplem6 12224 pythagtriplem7 12225 pcprmpw2 12286 dvdsprmpweqle 12290 pcprod 12298 pcfac 12302 pcbc 12303 expnprm 12305 pockthlem 12308 pockthg 12309 prmunb 12314 mul4sqlem 12345 logbgcd1irraplemexp 13680 lgslem1 13695 lgsval 13699 lgsfvalg 13700 lgsval2lem 13705 lgsvalmod 13714 lgsmod 13721 lgsdirprm 13729 lgsne0 13733 2sqlem3 13747 cvgcmp2nlemabs 14064 trilpolemlt1 14073 redcwlpolemeq1 14086 nconstwlpolem0 14094 |
Copyright terms: Public domain | W3C validator |