ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnv GIF version

Theorem expcnv 11686
Description: A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 28-Oct-2022.)
Hypotheses
Ref Expression
expcnv.1 (𝜑𝐴 ∈ ℂ)
expcnv.2 (𝜑 → (abs‘𝐴) < 1)
Assertion
Ref Expression
expcnv (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnv
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnssnn0 9269 . . . 4 ℕ ⊆ ℕ0
2 resmpt 4995 . . . 4 (ℕ ⊆ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)))
31, 2ax-mp 5 . . 3 ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
4 expcnv.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
54abscld 11363 . . . . 5 (𝜑 → (abs‘𝐴) ∈ ℝ)
6 expcnv.2 . . . . 5 (𝜑 → (abs‘𝐴) < 1)
74absge0d 11366 . . . . 5 (𝜑 → 0 ≤ (abs‘𝐴))
85, 6, 7expcnvre 11685 . . . 4 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
9 nnuz 9654 . . . . . . 7 ℕ = (ℤ‘1)
109reseq2i 4944 . . . . . 6 ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) = ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ↾ (ℤ‘1))
1110breq1i 4041 . . . . 5 (((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) ⇝ 0 ↔ ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ↾ (ℤ‘1)) ⇝ 0)
12 1z 9369 . . . . . 6 1 ∈ ℤ
13 nn0ex 9272 . . . . . . 7 0 ∈ V
1413mptex 5791 . . . . . 6 (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ∈ V
15 climres 11485 . . . . . 6 ((1 ∈ ℤ ∧ (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ∈ V) → (((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ↾ (ℤ‘1)) ⇝ 0 ↔ (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
1612, 14, 15mp2an 426 . . . . 5 (((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ↾ (ℤ‘1)) ⇝ 0 ↔ (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
1711, 16bitri 184 . . . 4 (((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) ⇝ 0 ↔ (𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
188, 17sylibr 134 . . 3 (𝜑 → ((𝑛 ∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) ⇝ 0)
193, 18eqbrtrrid 4070 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
20 1zzd 9370 . . 3 (𝜑 → 1 ∈ ℤ)
2113mptex 5791 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
2221a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
23 nnex 9013 . . . . 5 ℕ ∈ V
2423mptex 5791 . . . 4 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V
2524a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
26 nnnn0 9273 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2726adantl 277 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
284adantr 276 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
2928, 27expcld 10782 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
30 oveq2 5933 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
31 eqid 2196 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
3230, 31fvmptg 5640 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3327, 29, 32syl2anc 411 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
3433, 29eqeltrd 2273 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℂ)
35 absexp 11261 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
364, 26, 35syl2an 289 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
3733fveq2d 5565 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)) = (abs‘(𝐴𝑘)))
38 simpr 110 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
395adantr 276 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℝ)
4039recnd 8072 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℂ)
4140, 27expcld 10782 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
42 oveq2 5933 . . . . . 6 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
43 eqid 2196 . . . . . 6 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
4442, 43fvmptg 5640 . . . . 5 ((𝑘 ∈ ℕ ∧ ((abs‘𝐴)↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
4538, 41, 44syl2anc 411 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
4636, 37, 453eqtr4rd 2240 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)))
479, 20, 22, 25, 34, 46climabs0 11489 . 2 (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
4819, 47mpbird 167 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157   class class class wbr 4034  cmpt 4095  cres 4666  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   < clt 8078  cn 9007  0cn0 9266  cz 9343  cuz 9618  cexp 10647  abscabs 11179  cli 11460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461
This theorem is referenced by:  explecnv  11687  geolim  11693  geo2lim  11698
  Copyright terms: Public domain W3C validator