| Step | Hyp | Ref
 | Expression | 
| 1 |   | nnssnn0 9252 | 
. . . 4
⊢ ℕ
⊆ ℕ0 | 
| 2 |   | resmpt 4994 | 
. . . 4
⊢ (ℕ
⊆ ℕ0 → ((𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ↾ ℕ) = (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛))) | 
| 3 | 1, 2 | ax-mp 5 | 
. . 3
⊢ ((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) | 
| 4 |   | expcnv.1 | 
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 5 | 4 | abscld 11346 | 
. . . . 5
⊢ (𝜑 → (abs‘𝐴) ∈
ℝ) | 
| 6 |   | expcnv.2 | 
. . . . 5
⊢ (𝜑 → (abs‘𝐴) < 1) | 
| 7 | 4 | absge0d 11349 | 
. . . . 5
⊢ (𝜑 → 0 ≤ (abs‘𝐴)) | 
| 8 | 5, 6, 7 | expcnvre 11668 | 
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ⇝ 0) | 
| 9 |   | nnuz 9637 | 
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) | 
| 10 | 9 | reseq2i 4943 | 
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) = ((𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ↾
(ℤ≥‘1)) | 
| 11 | 10 | breq1i 4040 | 
. . . . 5
⊢ (((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) ⇝ 0 ↔ ((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ (ℤ≥‘1))
⇝ 0) | 
| 12 |   | 1z 9352 | 
. . . . . 6
⊢ 1 ∈
ℤ | 
| 13 |   | nn0ex 9255 | 
. . . . . . 7
⊢
ℕ0 ∈ V | 
| 14 | 13 | mptex 5788 | 
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ∈ V | 
| 15 |   | climres 11468 | 
. . . . . 6
⊢ ((1
∈ ℤ ∧ (𝑛
∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ∈ V) → (((𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ↾
(ℤ≥‘1)) ⇝ 0 ↔ (𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ⇝ 0)) | 
| 16 | 12, 14, 15 | mp2an 426 | 
. . . . 5
⊢ (((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ (ℤ≥‘1))
⇝ 0 ↔ (𝑛 ∈
ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) | 
| 17 | 11, 16 | bitri 184 | 
. . . 4
⊢ (((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) ⇝ 0 ↔ (𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) | 
| 18 | 8, 17 | sylibr 134 | 
. . 3
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ↾ ℕ) ⇝
0) | 
| 19 | 3, 18 | eqbrtrrid 4069 | 
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) | 
| 20 |   | 1zzd 9353 | 
. . 3
⊢ (𝜑 → 1 ∈
ℤ) | 
| 21 | 13 | mptex 5788 | 
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) ∈ V | 
| 22 | 21 | a1i 9 | 
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ∈ V) | 
| 23 |   | nnex 8996 | 
. . . . 5
⊢ ℕ
∈ V | 
| 24 | 23 | mptex 5788 | 
. . . 4
⊢ (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛)) ∈ V | 
| 25 | 24 | a1i 9 | 
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V) | 
| 26 |   | nnnn0 9256 | 
. . . . . 6
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) | 
| 27 | 26 | adantl 277 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) | 
| 28 | 4 | adantr 276 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ) | 
| 29 | 28, 27 | expcld 10765 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) ∈ ℂ) | 
| 30 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) | 
| 31 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) | 
| 32 | 30, 31 | fvmptg 5637 | 
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝐴↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) | 
| 33 | 27, 29, 32 | syl2anc 411 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) | 
| 34 | 33, 29 | eqeltrd 2273 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) ∈ ℂ) | 
| 35 |   | absexp 11244 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) | 
| 36 | 4, 26, 35 | syl2an 289 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) | 
| 37 | 33 | fveq2d 5562 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘)) = (abs‘(𝐴↑𝑘))) | 
| 38 |   | simpr 110 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | 
| 39 | 5 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘𝐴) ∈
ℝ) | 
| 40 | 39 | recnd 8055 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘𝐴) ∈
ℂ) | 
| 41 | 40, 27 | expcld 10765 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℂ) | 
| 42 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘)) | 
| 43 |   | eqid 2196 | 
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) | 
| 44 | 42, 43 | fvmptg 5637 | 
. . . . 5
⊢ ((𝑘 ∈ ℕ ∧
((abs‘𝐴)↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘)) | 
| 45 | 38, 41, 44 | syl2anc 411 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘)) | 
| 46 | 36, 37, 45 | 3eqtr4rd 2240 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘))) | 
| 47 | 9, 20, 22, 25, 34, 46 | climabs0 11472 | 
. 2
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)) | 
| 48 | 19, 47 | mpbird 167 | 
1
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |