Step | Hyp | Ref
| Expression |
1 | | nnssnn0 9117 |
. . . 4
⊢ ℕ
⊆ ℕ0 |
2 | | resmpt 4932 |
. . . 4
⊢ (ℕ
⊆ ℕ0 → ((𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ↾ ℕ) = (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛))) |
3 | 1, 2 | ax-mp 5 |
. . 3
⊢ ((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) |
4 | | expcnv.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) |
5 | 4 | abscld 11123 |
. . . . 5
⊢ (𝜑 → (abs‘𝐴) ∈
ℝ) |
6 | | expcnv.2 |
. . . . 5
⊢ (𝜑 → (abs‘𝐴) < 1) |
7 | 4 | absge0d 11126 |
. . . . 5
⊢ (𝜑 → 0 ≤ (abs‘𝐴)) |
8 | 5, 6, 7 | expcnvre 11444 |
. . . 4
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ⇝ 0) |
9 | | nnuz 9501 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
10 | 9 | reseq2i 4881 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) = ((𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ↾
(ℤ≥‘1)) |
11 | 10 | breq1i 3989 |
. . . . 5
⊢ (((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) ⇝ 0 ↔ ((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ (ℤ≥‘1))
⇝ 0) |
12 | | 1z 9217 |
. . . . . 6
⊢ 1 ∈
ℤ |
13 | | nn0ex 9120 |
. . . . . . 7
⊢
ℕ0 ∈ V |
14 | 13 | mptex 5711 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ∈ V |
15 | | climres 11244 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ (𝑛
∈ ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ∈ V) → (((𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ↾
(ℤ≥‘1)) ⇝ 0 ↔ (𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ⇝ 0)) |
16 | 12, 14, 15 | mp2an 423 |
. . . . 5
⊢ (((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ (ℤ≥‘1))
⇝ 0 ↔ (𝑛 ∈
ℕ0 ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) |
17 | 11, 16 | bitri 183 |
. . . 4
⊢ (((𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ↾ ℕ) ⇝ 0 ↔ (𝑛 ∈ ℕ0
↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) |
18 | 8, 17 | sylibr 133 |
. . 3
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦
((abs‘𝐴)↑𝑛)) ↾ ℕ) ⇝
0) |
19 | 3, 18 | eqbrtrrid 4018 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) |
20 | | 1zzd 9218 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
21 | 13 | mptex 5711 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) ∈ V |
22 | 21 | a1i 9 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ∈ V) |
23 | | nnex 8863 |
. . . . 5
⊢ ℕ
∈ V |
24 | 23 | mptex 5711 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛)) ∈ V |
25 | 24 | a1i 9 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V) |
26 | | nnnn0 9121 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
27 | 26 | adantl 275 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
28 | 4 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ) |
29 | 28, 27 | expcld 10588 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) ∈ ℂ) |
30 | | oveq2 5850 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) |
31 | | eqid 2165 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) |
32 | 30, 31 | fvmptg 5562 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝐴↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
33 | 27, 29, 32 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
34 | 33, 29 | eqeltrd 2243 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) ∈ ℂ) |
35 | | absexp 11021 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) |
36 | 4, 26, 35 | syl2an 287 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) |
37 | 33 | fveq2d 5490 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘)) = (abs‘(𝐴↑𝑘))) |
38 | | simpr 109 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
39 | 5 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘𝐴) ∈
ℝ) |
40 | 39 | recnd 7927 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘𝐴) ∈
ℂ) |
41 | 40, 27 | expcld 10588 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℂ) |
42 | | oveq2 5850 |
. . . . . 6
⊢ (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘)) |
43 | | eqid 2165 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) |
44 | 42, 43 | fvmptg 5562 |
. . . . 5
⊢ ((𝑘 ∈ ℕ ∧
((abs‘𝐴)↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘)) |
45 | 38, 41, 44 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘)) |
46 | 36, 37, 45 | 3eqtr4rd 2209 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘))) |
47 | 9, 20, 22, 25, 34, 46 | climabs0 11248 |
. 2
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)) |
48 | 19, 47 | mpbird 166 |
1
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |