![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > subrgnzr | GIF version |
Description: A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
subrgnzr.1 | β’ π = (π βΎs π΄) |
Ref | Expression |
---|---|
subrgnzr | β’ ((π β NzRing β§ π΄ β (SubRingβπ )) β π β NzRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgnzr.1 | . . . 4 β’ π = (π βΎs π΄) | |
2 | 1 | subrgring 13351 | . . 3 β’ (π΄ β (SubRingβπ ) β π β Ring) |
3 | 2 | adantl 277 | . 2 β’ ((π β NzRing β§ π΄ β (SubRingβπ )) β π β Ring) |
4 | eqid 2177 | . . . . 5 β’ (1rβπ ) = (1rβπ ) | |
5 | eqid 2177 | . . . . 5 β’ (0gβπ ) = (0gβπ ) | |
6 | 4, 5 | nzrnz 13332 | . . . 4 β’ (π β NzRing β (1rβπ ) β (0gβπ )) |
7 | 6 | adantr 276 | . . 3 β’ ((π β NzRing β§ π΄ β (SubRingβπ )) β (1rβπ ) β (0gβπ )) |
8 | 1, 4 | subrg1 13358 | . . . 4 β’ (π΄ β (SubRingβπ ) β (1rβπ ) = (1rβπ)) |
9 | 8 | adantl 277 | . . 3 β’ ((π β NzRing β§ π΄ β (SubRingβπ )) β (1rβπ ) = (1rβπ)) |
10 | 1, 5 | subrg0 13355 | . . . 4 β’ (π΄ β (SubRingβπ ) β (0gβπ ) = (0gβπ)) |
11 | 10 | adantl 277 | . . 3 β’ ((π β NzRing β§ π΄ β (SubRingβπ )) β (0gβπ ) = (0gβπ)) |
12 | 7, 9, 11 | 3netr3d 2379 | . 2 β’ ((π β NzRing β§ π΄ β (SubRingβπ )) β (1rβπ) β (0gβπ)) |
13 | eqid 2177 | . . 3 β’ (1rβπ) = (1rβπ) | |
14 | eqid 2177 | . . 3 β’ (0gβπ) = (0gβπ) | |
15 | 13, 14 | isnzr 13331 | . 2 β’ (π β NzRing β (π β Ring β§ (1rβπ) β (0gβπ))) |
16 | 3, 12, 15 | sylanbrc 417 | 1 β’ ((π β NzRing β§ π΄ β (SubRingβπ )) β π β NzRing) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 β wne 2347 βcfv 5218 (class class class)co 5878 βΎs cress 12466 0gc0g 12711 1rcur 13148 Ringcrg 13185 NzRingcnzr 13329 SubRingcsubrg 13344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-addcom 7914 ax-addass 7916 ax-i2m1 7919 ax-0lt1 7920 ax-0id 7922 ax-rnegex 7923 ax-pre-ltirr 7926 ax-pre-lttrn 7928 ax-pre-ltadd 7930 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-ltxr 8000 df-inn 8923 df-2 8981 df-3 8982 df-ndx 12468 df-slot 12469 df-base 12471 df-sets 12472 df-iress 12473 df-plusg 12552 df-mulr 12553 df-0g 12713 df-mgm 12781 df-sgrp 12814 df-mnd 12824 df-grp 12886 df-subg 13036 df-mgp 13137 df-ur 13149 df-ring 13187 df-nzr 13330 df-subrg 13346 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |