![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omssonALT | GIF version |
Description: Alternate proof of bj-omsson 15010. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-omssonALT | ⊢ ω ⊆ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-omelon 15009 | . 2 ⊢ ω ∈ On | |
2 | onss 4504 | . 2 ⊢ (ω ∈ On → ω ⊆ On) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ω ⊆ On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2158 ⊆ wss 3141 Oncon0 4375 ωcom 4601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-nul 4141 ax-pr 4221 ax-un 4445 ax-bd0 14861 ax-bdor 14864 ax-bdal 14866 ax-bdex 14867 ax-bdeq 14868 ax-bdel 14869 ax-bdsb 14870 ax-bdsep 14932 ax-infvn 14989 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-sn 3610 df-pr 3611 df-uni 3822 df-int 3857 df-tr 4114 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-bdc 14889 df-bj-ind 14975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |