| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eloni | GIF version | ||
| Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| eloni | ⊢ (𝐴 ∈ On → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong 4464 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ On → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Ord word 4453 Oncon0 4454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 |
| This theorem is referenced by: elon2 4467 onelon 4475 onin 4477 onelss 4478 ontr1 4480 onordi 4517 onss 4585 onsuc 4593 onsucb 4595 onsucmin 4599 onsucelsucr 4600 onintonm 4609 ordsucunielexmid 4623 onsucuni2 4656 nnord 4704 tfrlem1 6460 tfrlemisucaccv 6477 tfrlemibfn 6480 tfrlemiubacc 6482 tfrexlem 6486 tfr1onlemsucfn 6492 tfr1onlemsucaccv 6493 tfr1onlembfn 6496 tfr1onlemubacc 6498 tfrcllemsucfn 6505 tfrcllemsucaccv 6506 tfrcllembfn 6509 tfrcllemubacc 6511 sucinc2 6600 phplem4on 7037 ordiso 7211 |
| Copyright terms: Public domain | W3C validator |