![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eloni | GIF version |
Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
eloni | ⊢ (𝐴 ∈ On → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 4404 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ↔ Ord 𝐴)) | |
2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ On → Ord 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Ord word 4393 Oncon0 4394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-in 3159 df-ss 3166 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 |
This theorem is referenced by: elon2 4407 onelon 4415 onin 4417 onelss 4418 ontr1 4420 onordi 4457 onss 4525 onsuc 4533 onsucb 4535 onsucmin 4539 onsucelsucr 4540 onintonm 4549 ordsucunielexmid 4563 onsucuni2 4596 nnord 4644 tfrlem1 6361 tfrlemisucaccv 6378 tfrlemibfn 6381 tfrlemiubacc 6383 tfrexlem 6387 tfr1onlemsucfn 6393 tfr1onlemsucaccv 6394 tfr1onlembfn 6397 tfr1onlemubacc 6399 tfrcllemsucfn 6406 tfrcllemsucaccv 6407 tfrcllembfn 6410 tfrcllemubacc 6412 sucinc2 6499 phplem4on 6923 ordiso 7095 |
Copyright terms: Public domain | W3C validator |