| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eloni | GIF version | ||
| Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| eloni | ⊢ (𝐴 ∈ On → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong 4408 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ On → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 Ord word 4397 Oncon0 4398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 |
| This theorem is referenced by: elon2 4411 onelon 4419 onin 4421 onelss 4422 ontr1 4424 onordi 4461 onss 4529 onsuc 4537 onsucb 4539 onsucmin 4543 onsucelsucr 4544 onintonm 4553 ordsucunielexmid 4567 onsucuni2 4600 nnord 4648 tfrlem1 6366 tfrlemisucaccv 6383 tfrlemibfn 6386 tfrlemiubacc 6388 tfrexlem 6392 tfr1onlemsucfn 6398 tfr1onlemsucaccv 6399 tfr1onlembfn 6402 tfr1onlemubacc 6404 tfrcllemsucfn 6411 tfrcllemsucaccv 6412 tfrcllembfn 6415 tfrcllemubacc 6417 sucinc2 6504 phplem4on 6928 ordiso 7102 |
| Copyright terms: Public domain | W3C validator |