Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eloni | GIF version |
Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
eloni | ⊢ (𝐴 ∈ On → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 4351 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ↔ Ord 𝐴)) | |
2 | 1 | ibi 175 | 1 ⊢ (𝐴 ∈ On → Ord 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Ord word 4340 Oncon0 4341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 |
This theorem is referenced by: elon2 4354 onelon 4362 onin 4364 onelss 4365 ontr1 4367 onordi 4404 onss 4470 suceloni 4478 sucelon 4480 onsucmin 4484 onsucelsucr 4485 onintonm 4494 ordsucunielexmid 4508 onsucuni2 4541 nnord 4589 tfrlem1 6276 tfrlemisucaccv 6293 tfrlemibfn 6296 tfrlemiubacc 6298 tfrexlem 6302 tfr1onlemsucfn 6308 tfr1onlemsucaccv 6309 tfr1onlembfn 6312 tfr1onlemubacc 6314 tfrcllemsucfn 6321 tfrcllemsucaccv 6322 tfrcllembfn 6325 tfrcllemubacc 6327 sucinc2 6414 phplem4on 6833 ordiso 7001 |
Copyright terms: Public domain | W3C validator |