![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eloni | GIF version |
Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
eloni | ⊢ (𝐴 ∈ On → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 4405 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ↔ Ord 𝐴)) | |
2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ On → Ord 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Ord word 4394 Oncon0 4395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-in 3160 df-ss 3167 df-uni 3837 df-tr 4129 df-iord 4398 df-on 4400 |
This theorem is referenced by: elon2 4408 onelon 4416 onin 4418 onelss 4419 ontr1 4421 onordi 4458 onss 4526 onsuc 4534 onsucb 4536 onsucmin 4540 onsucelsucr 4541 onintonm 4550 ordsucunielexmid 4564 onsucuni2 4597 nnord 4645 tfrlem1 6363 tfrlemisucaccv 6380 tfrlemibfn 6383 tfrlemiubacc 6385 tfrexlem 6389 tfr1onlemsucfn 6395 tfr1onlemsucaccv 6396 tfr1onlembfn 6399 tfr1onlemubacc 6401 tfrcllemsucfn 6408 tfrcllemsucaccv 6409 tfrcllembfn 6412 tfrcllemubacc 6414 sucinc2 6501 phplem4on 6925 ordiso 7097 |
Copyright terms: Public domain | W3C validator |