| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eloni | GIF version | ||
| Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| eloni | ⊢ (𝐴 ∈ On → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong 4461 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ On → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 Ord word 4450 Oncon0 4451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 df-tr 4182 df-iord 4454 df-on 4456 |
| This theorem is referenced by: elon2 4464 onelon 4472 onin 4474 onelss 4475 ontr1 4477 onordi 4514 onss 4582 onsuc 4590 onsucb 4592 onsucmin 4596 onsucelsucr 4597 onintonm 4606 ordsucunielexmid 4620 onsucuni2 4653 nnord 4701 tfrlem1 6444 tfrlemisucaccv 6461 tfrlemibfn 6464 tfrlemiubacc 6466 tfrexlem 6470 tfr1onlemsucfn 6476 tfr1onlemsucaccv 6477 tfr1onlembfn 6480 tfr1onlemubacc 6482 tfrcllemsucfn 6489 tfrcllemsucaccv 6490 tfrcllembfn 6493 tfrcllemubacc 6495 sucinc2 6582 phplem4on 7017 ordiso 7191 |
| Copyright terms: Public domain | W3C validator |