Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eloni | GIF version |
Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
eloni | ⊢ (𝐴 ∈ On → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 4358 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ↔ Ord 𝐴)) | |
2 | 1 | ibi 175 | 1 ⊢ (𝐴 ∈ On → Ord 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 Ord word 4347 Oncon0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 |
This theorem is referenced by: elon2 4361 onelon 4369 onin 4371 onelss 4372 ontr1 4374 onordi 4411 onss 4477 suceloni 4485 sucelon 4487 onsucmin 4491 onsucelsucr 4492 onintonm 4501 ordsucunielexmid 4515 onsucuni2 4548 nnord 4596 tfrlem1 6287 tfrlemisucaccv 6304 tfrlemibfn 6307 tfrlemiubacc 6309 tfrexlem 6313 tfr1onlemsucfn 6319 tfr1onlemsucaccv 6320 tfr1onlembfn 6323 tfr1onlemubacc 6325 tfrcllemsucfn 6332 tfrcllemsucaccv 6333 tfrcllembfn 6336 tfrcllemubacc 6338 sucinc2 6425 phplem4on 6845 ordiso 7013 |
Copyright terms: Public domain | W3C validator |