| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eloni | GIF version | ||
| Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| eloni | ⊢ (𝐴 ∈ On → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong 4425 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ∈ On ↔ Ord 𝐴)) | |
| 2 | 1 | ibi 176 | 1 ⊢ (𝐴 ∈ On → Ord 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 Ord word 4414 Oncon0 4415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3174 df-ss 3181 df-uni 3854 df-tr 4148 df-iord 4418 df-on 4420 |
| This theorem is referenced by: elon2 4428 onelon 4436 onin 4438 onelss 4439 ontr1 4441 onordi 4478 onss 4546 onsuc 4554 onsucb 4556 onsucmin 4560 onsucelsucr 4561 onintonm 4570 ordsucunielexmid 4584 onsucuni2 4617 nnord 4665 tfrlem1 6404 tfrlemisucaccv 6421 tfrlemibfn 6424 tfrlemiubacc 6426 tfrexlem 6430 tfr1onlemsucfn 6436 tfr1onlemsucaccv 6437 tfr1onlembfn 6440 tfr1onlemubacc 6442 tfrcllemsucfn 6449 tfrcllemsucaccv 6450 tfrcllembfn 6453 tfrcllemubacc 6455 sucinc2 6542 phplem4on 6976 ordiso 7150 |
| Copyright terms: Public domain | W3C validator |