ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqvinop GIF version

Theorem eqvinop 4237
Description: A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
eqvinop.1 𝐵 ∈ V
eqvinop.2 𝐶 ∈ V
Assertion
Ref Expression
eqvinop (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem eqvinop
StepHypRef Expression
1 eqvinop.1 . . . . . . . 8 𝐵 ∈ V
2 eqvinop.2 . . . . . . . 8 𝐶 ∈ V
31, 2opth2 4234 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩ ↔ (𝑥 = 𝐵𝑦 = 𝐶))
43anbi2i 457 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐵𝑦 = 𝐶)))
5 ancom 266 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐵𝑦 = 𝐶)) ↔ ((𝑥 = 𝐵𝑦 = 𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
6 anass 401 . . . . . 6 (((𝑥 = 𝐵𝑦 = 𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ↔ (𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
74, 5, 63bitri 206 . . . . 5 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ (𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
87exbii 1603 . . . 4 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ ∃𝑦(𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
9 19.42v 1904 . . . 4 (∃𝑦(𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)) ↔ (𝑥 = 𝐵 ∧ ∃𝑦(𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
10 opeq2 3775 . . . . . . 7 (𝑦 = 𝐶 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐶⟩)
1110eqeq2d 2187 . . . . . 6 (𝑦 = 𝐶 → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 𝐶⟩))
122, 11ceqsexv 2774 . . . . 5 (∃𝑦(𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩) ↔ 𝐴 = ⟨𝑥, 𝐶⟩)
1312anbi2i 457 . . . 4 ((𝑥 = 𝐵 ∧ ∃𝑦(𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)) ↔ (𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩))
148, 9, 133bitri 206 . . 3 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ (𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩))
1514exbii 1603 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ ∃𝑥(𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩))
16 opeq1 3774 . . . 4 (𝑥 = 𝐵 → ⟨𝑥, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
1716eqeq2d 2187 . . 3 (𝑥 = 𝐵 → (𝐴 = ⟨𝑥, 𝐶⟩ ↔ 𝐴 = ⟨𝐵, 𝐶⟩))
181, 17ceqsexv 2774 . 2 (∃𝑥(𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩) ↔ 𝐴 = ⟨𝐵, 𝐶⟩)
1915, 18bitr2i 185 1 (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wex 1490  wcel 2146  Vcvv 2735  cop 3592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598
This theorem is referenced by:  copsexg  4238  ralxpf  4766  rexxpf  4767  oprabid  5897
  Copyright terms: Public domain W3C validator