ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqvinop GIF version

Theorem eqvinop 4061
Description: A variable introduction law for ordered pairs. Analog of Lemma 15 of [Monk2] p. 109. (Contributed by NM, 28-May-1995.)
Hypotheses
Ref Expression
eqvinop.1 𝐵 ∈ V
eqvinop.2 𝐶 ∈ V
Assertion
Ref Expression
eqvinop (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem eqvinop
StepHypRef Expression
1 eqvinop.1 . . . . . . . 8 𝐵 ∈ V
2 eqvinop.2 . . . . . . . 8 𝐶 ∈ V
31, 2opth2 4058 . . . . . . 7 (⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩ ↔ (𝑥 = 𝐵𝑦 = 𝐶))
43anbi2i 445 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐵𝑦 = 𝐶)))
5 ancom 262 . . . . . 6 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 = 𝐵𝑦 = 𝐶)) ↔ ((𝑥 = 𝐵𝑦 = 𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
6 anass 393 . . . . . 6 (((𝑥 = 𝐵𝑦 = 𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩) ↔ (𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
74, 5, 63bitri 204 . . . . 5 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ (𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
87exbii 1541 . . . 4 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ ∃𝑦(𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
9 19.42v 1834 . . . 4 (∃𝑦(𝑥 = 𝐵 ∧ (𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)) ↔ (𝑥 = 𝐵 ∧ ∃𝑦(𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)))
10 opeq2 3618 . . . . . . 7 (𝑦 = 𝐶 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝐶⟩)
1110eqeq2d 2099 . . . . . 6 (𝑦 = 𝐶 → (𝐴 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 𝐶⟩))
122, 11ceqsexv 2658 . . . . 5 (∃𝑦(𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩) ↔ 𝐴 = ⟨𝑥, 𝐶⟩)
1312anbi2i 445 . . . 4 ((𝑥 = 𝐵 ∧ ∃𝑦(𝑦 = 𝐶𝐴 = ⟨𝑥, 𝑦⟩)) ↔ (𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩))
148, 9, 133bitri 204 . . 3 (∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ (𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩))
1514exbii 1541 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩) ↔ ∃𝑥(𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩))
16 opeq1 3617 . . . 4 (𝑥 = 𝐵 → ⟨𝑥, 𝐶⟩ = ⟨𝐵, 𝐶⟩)
1716eqeq2d 2099 . . 3 (𝑥 = 𝐵 → (𝐴 = ⟨𝑥, 𝐶⟩ ↔ 𝐴 = ⟨𝐵, 𝐶⟩))
181, 17ceqsexv 2658 . 2 (∃𝑥(𝑥 = 𝐵𝐴 = ⟨𝑥, 𝐶⟩) ↔ 𝐴 = ⟨𝐵, 𝐶⟩)
1915, 18bitr2i 183 1 (𝐴 = ⟨𝐵, 𝐶⟩ ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ ⟨𝑥, 𝑦⟩ = ⟨𝐵, 𝐶⟩))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1289  wex 1426  wcel 1438  Vcvv 2619  cop 3444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450
This theorem is referenced by:  copsexg  4062  ralxpf  4570  rexxpf  4571  oprabid  5663
  Copyright terms: Public domain W3C validator