ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmet GIF version

Theorem cncfmet 13219
Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
cncfmet.1 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
cncfmet.2 𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
cncfmet.3 𝐽 = (MetOpen‘𝐶)
cncfmet.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
cncfmet ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))

Proof of Theorem cncfmet
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 523 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐴 ⊆ ℂ)
2 simprl 521 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑥𝐴)
3 simprr 522 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤𝐴)
4 cncfmet.1 . . . . . . . . . . . . . . . 16 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
54oveqi 5855 . . . . . . . . . . . . . . 15 (𝑥𝐶𝑤) = (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑤)
6 ovres 5981 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑤𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑤) = (𝑥(abs ∘ − )𝑤))
75, 6syl5eq 2211 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑤𝐴) → (𝑥𝐶𝑤) = (𝑥(abs ∘ − )𝑤))
87ad2ant2l 500 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥𝐶𝑤) = (𝑥(abs ∘ − )𝑤))
9 ssel2 3137 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → 𝑥 ∈ ℂ)
10 ssel2 3137 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℂ ∧ 𝑤𝐴) → 𝑤 ∈ ℂ)
11 eqid 2165 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
1211cnmetdval 13169 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
139, 10, 12syl2an 287 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
148, 13eqtrd 2198 . . . . . . . . . . . 12 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥𝐶𝑤) = (abs‘(𝑥𝑤)))
151, 2, 1, 3, 14syl22anc 1229 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑥𝐶𝑤) = (abs‘(𝑥𝑤)))
1615breq1d 3992 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑥𝐶𝑤) < 𝑧 ↔ (abs‘(𝑥𝑤)) < 𝑧))
17 ffvelrn 5618 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ 𝐵)
1817ad2ant2lr 502 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑥) ∈ 𝐵)
19 ffvelrn 5618 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝑤𝐴) → (𝑓𝑤) ∈ 𝐵)
2019ad2ant2l 500 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑤) ∈ 𝐵)
21 cncfmet.2 . . . . . . . . . . . . . . 15 𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
2221oveqi 5855 . . . . . . . . . . . . . 14 ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)((abs ∘ − ) ↾ (𝐵 × 𝐵))(𝑓𝑤))
23 ovres 5981 . . . . . . . . . . . . . 14 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑤) ∈ 𝐵) → ((𝑓𝑥)((abs ∘ − ) ↾ (𝐵 × 𝐵))(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
2422, 23syl5eq 2211 . . . . . . . . . . . . 13 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑤) ∈ 𝐵) → ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
2518, 20, 24syl2anc 409 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
26 simpllr 524 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐵 ⊆ ℂ)
2726, 18sseldd 3143 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑥) ∈ ℂ)
2826, 20sseldd 3143 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑤) ∈ ℂ)
2911cnmetdval 13169 . . . . . . . . . . . . 13 (((𝑓𝑥) ∈ ℂ ∧ (𝑓𝑤) ∈ ℂ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3027, 28, 29syl2anc 409 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3125, 30eqtrd 2198 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)𝐷(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3231breq1d 3992 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦 ↔ (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))
3316, 32imbi12d 233 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3433anassrs 398 . . . . . . . 8 (((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑤𝐴) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3534ralbidva 2462 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3635rexbidv 2467 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3736ralbidv 2466 . . . . 5 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3837ralbidva 2462 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3938pm5.32da 448 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))))
40 cnxmet 13171 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
41 xmetres2 13019 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
4240, 41mpan 421 . . . . 5 (𝐴 ⊆ ℂ → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
434, 42eqeltrid 2253 . . . 4 (𝐴 ⊆ ℂ → 𝐶 ∈ (∞Met‘𝐴))
44 xmetres2 13019 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
4540, 44mpan 421 . . . . 5 (𝐵 ⊆ ℂ → ((abs ∘ − ) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
4621, 45eqeltrid 2253 . . . 4 (𝐵 ⊆ ℂ → 𝐷 ∈ (∞Met‘𝐵))
47 cncfmet.3 . . . . 5 𝐽 = (MetOpen‘𝐶)
48 cncfmet.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
4947, 48metcn 13154 . . . 4 ((𝐶 ∈ (∞Met‘𝐴) ∧ 𝐷 ∈ (∞Met‘𝐵)) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
5043, 46, 49syl2an 287 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
51 elcncf 13200 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))))
5239, 50, 513bitr4rd 220 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) ↔ 𝑓 ∈ (𝐽 Cn 𝐾)))
5352eqrdv 2163 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  wrex 2445  wss 3116   class class class wbr 3982   × cxp 4602  cres 4606  ccom 4608  wf 5184  cfv 5188  (class class class)co 5842  cc 7751   < clt 7933  cmin 8069  +crp 9589  abscabs 10939  ∞Metcxmet 12620  MetOpencmopn 12625   Cn ccn 12825  cnccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828  df-cnp 12829  df-cncf 13198
This theorem is referenced by:  cncfcncntop  13220
  Copyright terms: Public domain W3C validator