ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmet GIF version

Theorem cncfmet 12757
Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
cncfmet.1 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
cncfmet.2 𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
cncfmet.3 𝐽 = (MetOpen‘𝐶)
cncfmet.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
cncfmet ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))

Proof of Theorem cncfmet
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 522 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐴 ⊆ ℂ)
2 simprl 520 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑥𝐴)
3 simprr 521 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤𝐴)
4 cncfmet.1 . . . . . . . . . . . . . . . 16 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
54oveqi 5787 . . . . . . . . . . . . . . 15 (𝑥𝐶𝑤) = (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑤)
6 ovres 5910 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑤𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑤) = (𝑥(abs ∘ − )𝑤))
75, 6syl5eq 2184 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑤𝐴) → (𝑥𝐶𝑤) = (𝑥(abs ∘ − )𝑤))
87ad2ant2l 499 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥𝐶𝑤) = (𝑥(abs ∘ − )𝑤))
9 ssel2 3092 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → 𝑥 ∈ ℂ)
10 ssel2 3092 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℂ ∧ 𝑤𝐴) → 𝑤 ∈ ℂ)
11 eqid 2139 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
1211cnmetdval 12707 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
139, 10, 12syl2an 287 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
148, 13eqtrd 2172 . . . . . . . . . . . 12 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥𝐶𝑤) = (abs‘(𝑥𝑤)))
151, 2, 1, 3, 14syl22anc 1217 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑥𝐶𝑤) = (abs‘(𝑥𝑤)))
1615breq1d 3939 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑥𝐶𝑤) < 𝑧 ↔ (abs‘(𝑥𝑤)) < 𝑧))
17 ffvelrn 5553 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ 𝐵)
1817ad2ant2lr 501 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑥) ∈ 𝐵)
19 ffvelrn 5553 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝑤𝐴) → (𝑓𝑤) ∈ 𝐵)
2019ad2ant2l 499 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑤) ∈ 𝐵)
21 cncfmet.2 . . . . . . . . . . . . . . 15 𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
2221oveqi 5787 . . . . . . . . . . . . . 14 ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)((abs ∘ − ) ↾ (𝐵 × 𝐵))(𝑓𝑤))
23 ovres 5910 . . . . . . . . . . . . . 14 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑤) ∈ 𝐵) → ((𝑓𝑥)((abs ∘ − ) ↾ (𝐵 × 𝐵))(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
2422, 23syl5eq 2184 . . . . . . . . . . . . 13 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑤) ∈ 𝐵) → ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
2518, 20, 24syl2anc 408 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
26 simpllr 523 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐵 ⊆ ℂ)
2726, 18sseldd 3098 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑥) ∈ ℂ)
2826, 20sseldd 3098 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑤) ∈ ℂ)
2911cnmetdval 12707 . . . . . . . . . . . . 13 (((𝑓𝑥) ∈ ℂ ∧ (𝑓𝑤) ∈ ℂ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3027, 28, 29syl2anc 408 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3125, 30eqtrd 2172 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)𝐷(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3231breq1d 3939 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦 ↔ (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))
3316, 32imbi12d 233 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3433anassrs 397 . . . . . . . 8 (((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑤𝐴) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3534ralbidva 2433 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3635rexbidv 2438 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3736ralbidv 2437 . . . . 5 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3837ralbidva 2433 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3938pm5.32da 447 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))))
40 cnxmet 12709 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
41 xmetres2 12557 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
4240, 41mpan 420 . . . . 5 (𝐴 ⊆ ℂ → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
434, 42eqeltrid 2226 . . . 4 (𝐴 ⊆ ℂ → 𝐶 ∈ (∞Met‘𝐴))
44 xmetres2 12557 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
4540, 44mpan 420 . . . . 5 (𝐵 ⊆ ℂ → ((abs ∘ − ) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
4621, 45eqeltrid 2226 . . . 4 (𝐵 ⊆ ℂ → 𝐷 ∈ (∞Met‘𝐵))
47 cncfmet.3 . . . . 5 𝐽 = (MetOpen‘𝐶)
48 cncfmet.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
4947, 48metcn 12692 . . . 4 ((𝐶 ∈ (∞Met‘𝐴) ∧ 𝐷 ∈ (∞Met‘𝐵)) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
5043, 46, 49syl2an 287 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
51 elcncf 12738 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))))
5239, 50, 513bitr4rd 220 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) ↔ 𝑓 ∈ (𝐽 Cn 𝐾)))
5352eqrdv 2137 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  wrex 2417  wss 3071   class class class wbr 3929   × cxp 4537  cres 4541  ccom 4543  wf 5119  cfv 5123  (class class class)co 5774  cc 7625   < clt 7807  cmin 7940  +crp 9448  abscabs 10776  ∞Metcxmet 12158  MetOpencmopn 12163   Cn ccn 12363  cnccncf 12735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-topgen 12150  df-psmet 12165  df-xmet 12166  df-met 12167  df-bl 12168  df-mopn 12169  df-top 12174  df-topon 12187  df-bases 12219  df-cn 12366  df-cnp 12367  df-cncf 12736
This theorem is referenced by:  cncfcncntop  12758
  Copyright terms: Public domain W3C validator