ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmet GIF version

Theorem cncfmet 14747
Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
cncfmet.1 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
cncfmet.2 𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
cncfmet.3 𝐽 = (MetOpen‘𝐶)
cncfmet.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
cncfmet ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))

Proof of Theorem cncfmet
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 533 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐴 ⊆ ℂ)
2 simprl 529 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑥𝐴)
3 simprr 531 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤𝐴)
4 cncfmet.1 . . . . . . . . . . . . . . . 16 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
54oveqi 5931 . . . . . . . . . . . . . . 15 (𝑥𝐶𝑤) = (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑤)
6 ovres 6058 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑤𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑤) = (𝑥(abs ∘ − )𝑤))
75, 6eqtrid 2238 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑤𝐴) → (𝑥𝐶𝑤) = (𝑥(abs ∘ − )𝑤))
87ad2ant2l 508 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥𝐶𝑤) = (𝑥(abs ∘ − )𝑤))
9 ssel2 3174 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → 𝑥 ∈ ℂ)
10 ssel2 3174 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℂ ∧ 𝑤𝐴) → 𝑤 ∈ ℂ)
11 eqid 2193 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
1211cnmetdval 14697 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
139, 10, 12syl2an 289 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
148, 13eqtrd 2226 . . . . . . . . . . . 12 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥𝐶𝑤) = (abs‘(𝑥𝑤)))
151, 2, 1, 3, 14syl22anc 1250 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑥𝐶𝑤) = (abs‘(𝑥𝑤)))
1615breq1d 4039 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑥𝐶𝑤) < 𝑧 ↔ (abs‘(𝑥𝑤)) < 𝑧))
17 ffvelcdm 5691 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ 𝐵)
1817ad2ant2lr 510 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑥) ∈ 𝐵)
19 ffvelcdm 5691 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝑤𝐴) → (𝑓𝑤) ∈ 𝐵)
2019ad2ant2l 508 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑤) ∈ 𝐵)
21 cncfmet.2 . . . . . . . . . . . . . . 15 𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
2221oveqi 5931 . . . . . . . . . . . . . 14 ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)((abs ∘ − ) ↾ (𝐵 × 𝐵))(𝑓𝑤))
23 ovres 6058 . . . . . . . . . . . . . 14 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑤) ∈ 𝐵) → ((𝑓𝑥)((abs ∘ − ) ↾ (𝐵 × 𝐵))(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
2422, 23eqtrid 2238 . . . . . . . . . . . . 13 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑤) ∈ 𝐵) → ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
2518, 20, 24syl2anc 411 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
26 simpllr 534 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐵 ⊆ ℂ)
2726, 18sseldd 3180 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑥) ∈ ℂ)
2826, 20sseldd 3180 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑤) ∈ ℂ)
2911cnmetdval 14697 . . . . . . . . . . . . 13 (((𝑓𝑥) ∈ ℂ ∧ (𝑓𝑤) ∈ ℂ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3027, 28, 29syl2anc 411 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3125, 30eqtrd 2226 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)𝐷(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3231breq1d 4039 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦 ↔ (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))
3316, 32imbi12d 234 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3433anassrs 400 . . . . . . . 8 (((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑤𝐴) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3534ralbidva 2490 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3635rexbidv 2495 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3736ralbidv 2494 . . . . 5 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3837ralbidva 2490 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3938pm5.32da 452 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))))
40 cnxmet 14699 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
41 xmetres2 14547 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
4240, 41mpan 424 . . . . 5 (𝐴 ⊆ ℂ → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
434, 42eqeltrid 2280 . . . 4 (𝐴 ⊆ ℂ → 𝐶 ∈ (∞Met‘𝐴))
44 xmetres2 14547 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
4540, 44mpan 424 . . . . 5 (𝐵 ⊆ ℂ → ((abs ∘ − ) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
4621, 45eqeltrid 2280 . . . 4 (𝐵 ⊆ ℂ → 𝐷 ∈ (∞Met‘𝐵))
47 cncfmet.3 . . . . 5 𝐽 = (MetOpen‘𝐶)
48 cncfmet.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
4947, 48metcn 14682 . . . 4 ((𝐶 ∈ (∞Met‘𝐴) ∧ 𝐷 ∈ (∞Met‘𝐵)) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
5043, 46, 49syl2an 289 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
51 elcncf 14728 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))))
5239, 50, 513bitr4rd 221 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) ↔ 𝑓 ∈ (𝐽 Cn 𝐾)))
5352eqrdv 2191 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  wss 3153   class class class wbr 4029   × cxp 4657  cres 4661  ccom 4663  wf 5250  cfv 5254  (class class class)co 5918  cc 7870   < clt 8054  cmin 8190  +crp 9719  abscabs 11141  ∞Metcxmet 14032  MetOpencmopn 14037   Cn ccn 14353  cnccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-xneg 9838  df-xadd 9839  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-topgen 12871  df-psmet 14039  df-xmet 14040  df-met 14041  df-bl 14042  df-mopn 14043  df-top 14166  df-topon 14179  df-bases 14211  df-cn 14356  df-cnp 14357  df-cncf 14726
This theorem is referenced by:  cncfcncntop  14748
  Copyright terms: Public domain W3C validator