ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncfmet GIF version

Theorem cncfmet 15231
Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
cncfmet.1 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
cncfmet.2 𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
cncfmet.3 𝐽 = (MetOpen‘𝐶)
cncfmet.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
cncfmet ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))

Proof of Theorem cncfmet
Dummy variables 𝑤 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 533 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐴 ⊆ ℂ)
2 simprl 529 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑥𝐴)
3 simprr 531 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝑤𝐴)
4 cncfmet.1 . . . . . . . . . . . . . . . 16 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))
54oveqi 5987 . . . . . . . . . . . . . . 15 (𝑥𝐶𝑤) = (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑤)
6 ovres 6116 . . . . . . . . . . . . . . 15 ((𝑥𝐴𝑤𝐴) → (𝑥((abs ∘ − ) ↾ (𝐴 × 𝐴))𝑤) = (𝑥(abs ∘ − )𝑤))
75, 6eqtrid 2254 . . . . . . . . . . . . . 14 ((𝑥𝐴𝑤𝐴) → (𝑥𝐶𝑤) = (𝑥(abs ∘ − )𝑤))
87ad2ant2l 508 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥𝐶𝑤) = (𝑥(abs ∘ − )𝑤))
9 ssel2 3199 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℂ ∧ 𝑥𝐴) → 𝑥 ∈ ℂ)
10 ssel2 3199 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℂ ∧ 𝑤𝐴) → 𝑤 ∈ ℂ)
11 eqid 2209 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
1211cnmetdval 15168 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑤 ∈ ℂ) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
139, 10, 12syl2an 289 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥(abs ∘ − )𝑤) = (abs‘(𝑥𝑤)))
148, 13eqtrd 2242 . . . . . . . . . . . 12 (((𝐴 ⊆ ℂ ∧ 𝑥𝐴) ∧ (𝐴 ⊆ ℂ ∧ 𝑤𝐴)) → (𝑥𝐶𝑤) = (abs‘(𝑥𝑤)))
151, 2, 1, 3, 14syl22anc 1253 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑥𝐶𝑤) = (abs‘(𝑥𝑤)))
1615breq1d 4072 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑥𝐶𝑤) < 𝑧 ↔ (abs‘(𝑥𝑤)) < 𝑧))
17 ffvelcdm 5741 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝑥𝐴) → (𝑓𝑥) ∈ 𝐵)
1817ad2ant2lr 510 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑥) ∈ 𝐵)
19 ffvelcdm 5741 . . . . . . . . . . . . . 14 ((𝑓:𝐴𝐵𝑤𝐴) → (𝑓𝑤) ∈ 𝐵)
2019ad2ant2l 508 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑤) ∈ 𝐵)
21 cncfmet.2 . . . . . . . . . . . . . . 15 𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))
2221oveqi 5987 . . . . . . . . . . . . . 14 ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)((abs ∘ − ) ↾ (𝐵 × 𝐵))(𝑓𝑤))
23 ovres 6116 . . . . . . . . . . . . . 14 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑤) ∈ 𝐵) → ((𝑓𝑥)((abs ∘ − ) ↾ (𝐵 × 𝐵))(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
2422, 23eqtrid 2254 . . . . . . . . . . . . 13 (((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑤) ∈ 𝐵) → ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
2518, 20, 24syl2anc 411 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)𝐷(𝑓𝑤)) = ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)))
26 simpllr 534 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → 𝐵 ⊆ ℂ)
2726, 18sseldd 3205 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑥) ∈ ℂ)
2826, 20sseldd 3205 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (𝑓𝑤) ∈ ℂ)
2911cnmetdval 15168 . . . . . . . . . . . . 13 (((𝑓𝑥) ∈ ℂ ∧ (𝑓𝑤) ∈ ℂ) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3027, 28, 29syl2anc 411 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)(abs ∘ − )(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3125, 30eqtrd 2242 . . . . . . . . . . 11 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → ((𝑓𝑥)𝐷(𝑓𝑤)) = (abs‘((𝑓𝑥) − (𝑓𝑤))))
3231breq1d 4072 . . . . . . . . . 10 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦 ↔ (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))
3316, 32imbi12d 234 . . . . . . . . 9 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ (𝑥𝐴𝑤𝐴)) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3433anassrs 400 . . . . . . . 8 (((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) ∧ 𝑤𝐴) → (((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3534ralbidva 2506 . . . . . . 7 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3635rexbidv 2511 . . . . . 6 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∃𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3736ralbidv 2510 . . . . 5 ((((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3837ralbidva 2506 . . . 4 (((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) ∧ 𝑓:𝐴𝐵) → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)))
3938pm5.32da 452 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → ((𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦)) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))))
40 cnxmet 15170 . . . . . 6 (abs ∘ − ) ∈ (∞Met‘ℂ)
41 xmetres2 15018 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
4240, 41mpan 424 . . . . 5 (𝐴 ⊆ ℂ → ((abs ∘ − ) ↾ (𝐴 × 𝐴)) ∈ (∞Met‘𝐴))
434, 42eqeltrid 2296 . . . 4 (𝐴 ⊆ ℂ → 𝐶 ∈ (∞Met‘𝐴))
44 xmetres2 15018 . . . . . 6 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐵 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
4540, 44mpan 424 . . . . 5 (𝐵 ⊆ ℂ → ((abs ∘ − ) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
4621, 45eqeltrid 2296 . . . 4 (𝐵 ⊆ ℂ → 𝐷 ∈ (∞Met‘𝐵))
47 cncfmet.3 . . . . 5 𝐽 = (MetOpen‘𝐶)
48 cncfmet.4 . . . . 5 𝐾 = (MetOpen‘𝐷)
4947, 48metcn 15153 . . . 4 ((𝐶 ∈ (∞Met‘𝐴) ∧ 𝐷 ∈ (∞Met‘𝐵)) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
5043, 46, 49syl2an 289 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐽 Cn 𝐾) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((𝑥𝐶𝑤) < 𝑧 → ((𝑓𝑥)𝐷(𝑓𝑤)) < 𝑦))))
51 elcncf 15212 . . 3 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦))))
5239, 50, 513bitr4rd 221 . 2 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝑓 ∈ (𝐴cn𝐵) ↔ 𝑓 ∈ (𝐽 Cn 𝐾)))
5352eqrdv 2207 1 ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wral 2488  wrex 2489  wss 3177   class class class wbr 4062   × cxp 4694  cres 4698  ccom 4700  wf 5290  cfv 5294  (class class class)co 5974  cc 7965   < clt 8149  cmin 8285  +crp 9817  abscabs 11474  ∞Metcxmet 14465  MetOpencmopn 14470   Cn ccn 14824  cnccncf 15209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-map 6767  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-seqfrec 10637  df-exp 10728  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-cn 14827  df-cnp 14828  df-cncf 15210
This theorem is referenced by:  cncfcncntop  15232
  Copyright terms: Public domain W3C validator