ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqvalcbv GIF version

Theorem iseqvalcbv 10454
Description: Changing the bound variables in an expression which appears in some seq related proofs. (Contributed by Jim Kingdon, 28-Apr-2022.)
Assertion
Ref Expression
iseqvalcbv frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩)
Distinct variable groups:   + ,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤, + ,𝑧,𝑐,𝑑   𝐹,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤,𝐹,𝑧   𝑀,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤,𝑀,𝑧   𝑆,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤,𝑆,𝑧   𝑇,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝑇(𝑧,𝑤,𝑐,𝑑)

Proof of Theorem iseqvalcbv
StepHypRef Expression
1 oveq1 5881 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑐 + 1) = (𝑧 + 1))
21fveq2d 5519 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐹‘(𝑐 + 1)) = (𝐹‘(𝑧 + 1)))
32oveq2d 5890 . . . . . . . 8 (𝑐 = 𝑧 → (𝑑 + (𝐹‘(𝑐 + 1))) = (𝑑 + (𝐹‘(𝑧 + 1))))
4 oveq1 5881 . . . . . . . 8 (𝑑 = 𝑤 → (𝑑 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑧 + 1))))
53, 4cbvmpov 5954 . . . . . . 7 (𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
65oveqi 5887 . . . . . 6 (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)
76opeq2i 3782 . . . . 5 ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩
87a1i 9 . . . 4 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑇) → ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
98mpoeq3ia 5939 . . 3 (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
10 oveq1 5881 . . . . 5 (𝑥 = 𝑎 → (𝑥 + 1) = (𝑎 + 1))
11 oveq1 5881 . . . . 5 (𝑥 = 𝑎 → (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦))
1210, 11opeq12d 3786 . . . 4 (𝑥 = 𝑎 → ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩)
13 oveq2 5882 . . . . 5 (𝑦 = 𝑏 → (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏))
1413opeq2d 3785 . . . 4 (𝑦 = 𝑏 → ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩)
1512, 14cbvmpov 5954 . . 3 (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩) = (𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩)
169, 15eqtr3i 2200 . 2 (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩) = (𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩)
17 freceq1 6392 . 2 ((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩) = (𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩))
1816, 17ax-mp 5 1 frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1353  wcel 2148  cop 3595  cfv 5216  (class class class)co 5874  cmpo 5876  freccfrec 6390  1c1 7811   + caddc 7813  cuz 9526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-res 4638  df-iota 5178  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-recs 6305  df-frec 6391
This theorem is referenced by:  seq3-1  10457  seqf  10458  seq3p1  10459  seqf2  10461  seq1cd  10462  seqp1cd  10463
  Copyright terms: Public domain W3C validator