ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqvalcbv GIF version

Theorem iseqvalcbv 9764
Description: Changing the bound variables in an expression which appears in some seq related proofs. (Contributed by Jim Kingdon, 28-Apr-2022.)
Assertion
Ref Expression
iseqvalcbv frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩)
Distinct variable groups:   + ,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤, + ,𝑧,𝑐,𝑑   𝐹,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤,𝐹,𝑧   𝑀,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤,𝑀,𝑧   𝑆,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤,𝑆,𝑧   𝑇,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝑇(𝑧,𝑤,𝑐,𝑑)

Proof of Theorem iseqvalcbv
StepHypRef Expression
1 oveq1 5601 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑐 + 1) = (𝑧 + 1))
21fveq2d 5260 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐹‘(𝑐 + 1)) = (𝐹‘(𝑧 + 1)))
32oveq2d 5610 . . . . . . . 8 (𝑐 = 𝑧 → (𝑑 + (𝐹‘(𝑐 + 1))) = (𝑑 + (𝐹‘(𝑧 + 1))))
4 oveq1 5601 . . . . . . . 8 (𝑑 = 𝑤 → (𝑑 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑧 + 1))))
53, 4cbvmpt2v 5666 . . . . . . 7 (𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
65oveqi 5607 . . . . . 6 (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)
76opeq2i 3603 . . . . 5 ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩
87a1i 9 . . . 4 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑇) → ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
98mpt2eq3ia 5652 . . 3 (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
10 oveq1 5601 . . . . 5 (𝑥 = 𝑎 → (𝑥 + 1) = (𝑎 + 1))
11 oveq1 5601 . . . . 5 (𝑥 = 𝑎 → (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦))
1210, 11opeq12d 3607 . . . 4 (𝑥 = 𝑎 → ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩)
13 oveq2 5602 . . . . 5 (𝑦 = 𝑏 → (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏))
1413opeq2d 3606 . . . 4 (𝑦 = 𝑏 → ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩)
1512, 14cbvmpt2v 5666 . . 3 (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩) = (𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩)
169, 15eqtr3i 2107 . 2 (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩) = (𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩)
17 freceq1 6092 . 2 ((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩) = (𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩))
1816, 17ax-mp 7 1 frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩)
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1287  wcel 1436  cop 3428  cfv 4972  (class class class)co 5594  cmpt2 5596  freccfrec 6090  1c1 7272   + caddc 7274  cuz 8928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-v 2616  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-opab 3869  df-mpt 3870  df-res 4416  df-iota 4937  df-fv 4980  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-recs 6005  df-frec 6091
This theorem is referenced by:  iseq1t  9767  iseqfclt  9769  iseqp1t  9772
  Copyright terms: Public domain W3C validator