Proof of Theorem iseqvalcbv
Step | Hyp | Ref
| Expression |
1 | | oveq1 5849 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑧 → (𝑐 + 1) = (𝑧 + 1)) |
2 | 1 | fveq2d 5490 |
. . . . . . . . 9
⊢ (𝑐 = 𝑧 → (𝐹‘(𝑐 + 1)) = (𝐹‘(𝑧 + 1))) |
3 | 2 | oveq2d 5858 |
. . . . . . . 8
⊢ (𝑐 = 𝑧 → (𝑑 + (𝐹‘(𝑐 + 1))) = (𝑑 + (𝐹‘(𝑧 + 1)))) |
4 | | oveq1 5849 |
. . . . . . . 8
⊢ (𝑑 = 𝑤 → (𝑑 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑧 + 1)))) |
5 | 3, 4 | cbvmpov 5922 |
. . . . . . 7
⊢ (𝑐 ∈
(ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) |
6 | 5 | oveqi 5855 |
. . . . . 6
⊢ (𝑥(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) |
7 | 6 | opeq2i 3762 |
. . . . 5
⊢
〈(𝑥 + 1),
(𝑥(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)〉 = 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉 |
8 | 7 | a1i 9 |
. . . 4
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑇) → 〈(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)〉 = 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) |
9 | 8 | mpoeq3ia 5907 |
. . 3
⊢ (𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)〉) = (𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) |
10 | | oveq1 5849 |
. . . . 5
⊢ (𝑥 = 𝑎 → (𝑥 + 1) = (𝑎 + 1)) |
11 | | oveq1 5849 |
. . . . 5
⊢ (𝑥 = 𝑎 → (𝑥(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)) |
12 | 10, 11 | opeq12d 3766 |
. . . 4
⊢ (𝑥 = 𝑎 → 〈(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)〉 = 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)〉) |
13 | | oveq2 5850 |
. . . . 5
⊢ (𝑦 = 𝑏 → (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)) |
14 | 13 | opeq2d 3765 |
. . . 4
⊢ (𝑦 = 𝑏 → 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)〉 = 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉) |
15 | 12, 14 | cbvmpov 5922 |
. . 3
⊢ (𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)〉) = (𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ 𝑇 ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉) |
16 | 9, 15 | eqtr3i 2188 |
. 2
⊢ (𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) = (𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ 𝑇 ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉) |
17 | | freceq1 6360 |
. 2
⊢ ((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉) = (𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ 𝑇 ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉) → frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ 𝑇 ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉)) |
18 | 16, 17 | ax-mp 5 |
1
⊢
frec((𝑥 ∈
(ℤ≥‘𝑀), 𝑦 ∈ 𝑇 ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑎 ∈ (ℤ≥‘𝑀), 𝑏 ∈ 𝑇 ↦ 〈(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ≥‘𝑀), 𝑑 ∈ 𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)〉), 〈𝑀, (𝐹‘𝑀)〉) |