ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqvalcbv GIF version

Theorem iseqvalcbv 10530
Description: Changing the bound variables in an expression which appears in some seq related proofs. (Contributed by Jim Kingdon, 28-Apr-2022.)
Assertion
Ref Expression
iseqvalcbv frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩)
Distinct variable groups:   + ,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤, + ,𝑧,𝑐,𝑑   𝐹,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤,𝐹,𝑧   𝑀,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤,𝑀,𝑧   𝑆,𝑎,𝑏,𝑐,𝑑,𝑥,𝑦   𝑤,𝑆,𝑧   𝑇,𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝑇(𝑧,𝑤,𝑐,𝑑)

Proof of Theorem iseqvalcbv
StepHypRef Expression
1 oveq1 5925 . . . . . . . . . 10 (𝑐 = 𝑧 → (𝑐 + 1) = (𝑧 + 1))
21fveq2d 5558 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐹‘(𝑐 + 1)) = (𝐹‘(𝑧 + 1)))
32oveq2d 5934 . . . . . . . 8 (𝑐 = 𝑧 → (𝑑 + (𝐹‘(𝑐 + 1))) = (𝑑 + (𝐹‘(𝑧 + 1))))
4 oveq1 5925 . . . . . . . 8 (𝑑 = 𝑤 → (𝑑 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑧 + 1))))
53, 4cbvmpov 5998 . . . . . . 7 (𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
65oveqi 5931 . . . . . 6 (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)
76opeq2i 3808 . . . . 5 ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩
87a1i 9 . . . 4 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑇) → ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
98mpoeq3ia 5983 . . 3 (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩) = (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩)
10 oveq1 5925 . . . . 5 (𝑥 = 𝑎 → (𝑥 + 1) = (𝑎 + 1))
11 oveq1 5925 . . . . 5 (𝑥 = 𝑎 → (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦))
1210, 11opeq12d 3812 . . . 4 (𝑥 = 𝑎 → ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩)
13 oveq2 5926 . . . . 5 (𝑦 = 𝑏 → (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦) = (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏))
1413opeq2d 3811 . . . 4 (𝑦 = 𝑏 → ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩ = ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩)
1512, 14cbvmpov 5998 . . 3 (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑦)⟩) = (𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩)
169, 15eqtr3i 2216 . 2 (𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩) = (𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩)
17 freceq1 6445 . 2 ((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩) = (𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩) → frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩))
1816, 17ax-mp 5 1 frec((𝑥 ∈ (ℤ𝑀), 𝑦𝑇 ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑎 ∈ (ℤ𝑀), 𝑏𝑇 ↦ ⟨(𝑎 + 1), (𝑎(𝑐 ∈ (ℤ𝑀), 𝑑𝑆 ↦ (𝑑 + (𝐹‘(𝑐 + 1))))𝑏)⟩), ⟨𝑀, (𝐹𝑀)⟩)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2164  cop 3621  cfv 5254  (class class class)co 5918  cmpo 5920  freccfrec 6443  1c1 7873   + caddc 7875  cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-res 4671  df-iota 5215  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444
This theorem is referenced by:  seq3-1  10533  seqf  10535  seq3p1  10536  seqf2  10539  seq1cd  10540  seqp1cd  10541
  Copyright terms: Public domain W3C validator