| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mndprop | GIF version | ||
| Description: If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| mndprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
| mndprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
| Ref | Expression |
|---|---|
| mndprop | ⊢ (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2205 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
| 2 | mndprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) |
| 4 | mndprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
| 5 | 4 | oveqi 5947 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
| 6 | 5 | a1i 9 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 7 | 1, 3, 6 | mndpropd 13190 | . 2 ⊢ (⊤ → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)) |
| 8 | 7 | mptru 1381 | 1 ⊢ (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ⊤wtru 1373 ∈ wcel 2175 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 +gcplusg 12828 Mndcmnd 13166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-ov 5937 df-inn 9019 df-2 9077 df-ndx 12754 df-slot 12755 df-base 12757 df-plusg 12841 df-mgm 13106 df-sgrp 13152 df-mnd 13167 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |