ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablprop GIF version

Theorem ablprop 12896
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
ablprop.b (Base‘𝐾) = (Base‘𝐿)
ablprop.p (+g𝐾) = (+g𝐿)
Assertion
Ref Expression
ablprop (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)

Proof of Theorem ablprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2176 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐾))
2 ablprop.b . . . 4 (Base‘𝐾) = (Base‘𝐿)
32a1i 9 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐿))
4 ablprop.p . . . . 5 (+g𝐾) = (+g𝐿)
54oveqi 5878 . . . 4 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
65a1i 9 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
71, 3, 6ablpropd 12895 . 2 (⊤ → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel))
87mptru 1362 1 (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wtru 1354  wcel 2146  cfv 5208  (class class class)co 5865  Basecbs 12428  +gcplusg 12492  Abelcabl 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-riota 5821  df-ov 5868  df-inn 8891  df-2 8949  df-ndx 12431  df-slot 12432  df-base 12434  df-plusg 12505  df-0g 12628  df-mgm 12640  df-sgrp 12673  df-mnd 12683  df-grp 12741  df-cmn 12886  df-abl 12887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator