ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringprop GIF version

Theorem ringprop 13172
Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
ringprop.b (Base‘𝐾) = (Base‘𝐿)
ringprop.p (+g𝐾) = (+g𝐿)
ringprop.m (.r𝐾) = (.r𝐿)
Assertion
Ref Expression
ringprop (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)

Proof of Theorem ringprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2178 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐾))
2 ringprop.b . . . 4 (Base‘𝐾) = (Base‘𝐿)
32a1i 9 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐿))
4 ringprop.p . . . . 5 (+g𝐾) = (+g𝐿)
54oveqi 5887 . . . 4 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
65a1i 9 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 ringprop.m . . . . 5 (.r𝐾) = (.r𝐿)
87oveqi 5887 . . . 4 (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)
98a1i 9 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
101, 3, 6, 9ringpropd 13170 . 2 (⊤ → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
1110mptru 1362 1 (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wtru 1354  wcel 2148  cfv 5216  (class class class)co 5874  Basecbs 12456  +gcplusg 12530  .rcmulr 12531  Ringcrg 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-pre-ltirr 7922  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-iota 5178  df-fun 5218  df-fn 5219  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7992  df-mnf 7993  df-ltxr 7995  df-inn 8918  df-2 8976  df-3 8977  df-ndx 12459  df-slot 12460  df-base 12462  df-sets 12463  df-plusg 12543  df-mulr 12544  df-0g 12697  df-mgm 12729  df-sgrp 12762  df-mnd 12772  df-grp 12834  df-mgp 13084  df-ring 13134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator