| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringprop | GIF version | ||
| Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| ringprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
| ringprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
| ringprop.m | ⊢ (.r‘𝐾) = (.r‘𝐿) |
| Ref | Expression |
|---|---|
| ringprop | ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2230 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
| 2 | ringprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) |
| 4 | ringprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
| 5 | 4 | oveqi 6020 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
| 6 | 5 | a1i 9 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 7 | ringprop.m | . . . . 5 ⊢ (.r‘𝐾) = (.r‘𝐿) | |
| 8 | 7 | oveqi 6020 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦) |
| 9 | 8 | a1i 9 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
| 10 | 1, 3, 6, 9 | ringpropd 14009 | . 2 ⊢ (⊤ → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
| 11 | 10 | mptru 1404 | 1 ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 .rcmulr 13119 Ringcrg 13967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-mgp 13892 df-ring 13969 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |