ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringprop GIF version

Theorem ringprop 13355
Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
Hypotheses
Ref Expression
ringprop.b (Base‘𝐾) = (Base‘𝐿)
ringprop.p (+g𝐾) = (+g𝐿)
ringprop.m (.r𝐾) = (.r𝐿)
Assertion
Ref Expression
ringprop (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)

Proof of Theorem ringprop
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2190 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐾))
2 ringprop.b . . . 4 (Base‘𝐾) = (Base‘𝐿)
32a1i 9 . . 3 (⊤ → (Base‘𝐾) = (Base‘𝐿))
4 ringprop.p . . . . 5 (+g𝐾) = (+g𝐿)
54oveqi 5904 . . . 4 (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦)
65a1i 9 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
7 ringprop.m . . . . 5 (.r𝐾) = (.r𝐿)
87oveqi 5904 . . . 4 (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦)
98a1i 9 . . 3 ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
101, 3, 6, 9ringpropd 13353 . 2 (⊤ → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
1110mptru 1373 1 (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wtru 1365  wcel 2160  cfv 5231  (class class class)co 5891  Basecbs 12480  +gcplusg 12555  .rcmulr 12556  Ringcrg 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-addcom 7929  ax-addass 7931  ax-i2m1 7934  ax-0lt1 7935  ax-0id 7937  ax-rnegex 7938  ax-pre-ltirr 7941  ax-pre-ltadd 7945
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-iota 5193  df-fun 5233  df-fn 5234  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-pnf 8012  df-mnf 8013  df-ltxr 8015  df-inn 8938  df-2 8996  df-3 8997  df-ndx 12483  df-slot 12484  df-base 12486  df-sets 12487  df-plusg 12568  df-mulr 12569  df-0g 12729  df-mgm 12798  df-sgrp 12831  df-mnd 12844  df-grp 12914  df-mgp 13236  df-ring 13313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator