Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ringprop | GIF version |
Description: If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.) |
Ref | Expression |
---|---|
ringprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
ringprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
ringprop.m | ⊢ (.r‘𝐾) = (.r‘𝐿) |
Ref | Expression |
---|---|
ringprop | ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2176 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
2 | ringprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) |
4 | ringprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
5 | 4 | oveqi 5878 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
6 | 5 | a1i 9 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
7 | ringprop.m | . . . . 5 ⊢ (.r‘𝐾) = (.r‘𝐿) | |
8 | 7 | oveqi 5878 | . . . 4 ⊢ (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦) |
9 | 8 | a1i 9 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
10 | 1, 3, 6, 9 | ringpropd 13009 | . 2 ⊢ (⊤ → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)) |
11 | 10 | mptru 1362 | 1 ⊢ (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1353 ⊤wtru 1354 ∈ wcel 2146 ‘cfv 5208 (class class class)co 5865 Basecbs 12428 +gcplusg 12492 .rcmulr 12493 Ringcrg 12972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-base 12434 df-sets 12435 df-plusg 12505 df-mulr 12506 df-0g 12628 df-mgm 12640 df-sgrp 12673 df-mnd 12683 df-grp 12741 df-mgp 12926 df-ring 12974 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |