| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpprop | GIF version | ||
| Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| grpprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
| grpprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
| Ref | Expression |
|---|---|
| grpprop | ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2210 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
| 2 | grpprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) |
| 4 | grpprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
| 5 | 4 | oveqi 5987 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
| 6 | 5 | a1i 9 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 7 | 1, 3, 6 | grppropd 13516 | . 2 ⊢ (⊤ → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
| 8 | 7 | mptru 1384 | 1 ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1375 ⊤wtru 1376 ∈ wcel 2180 ‘cfv 5294 (class class class)co 5974 Basecbs 12998 +gcplusg 13076 Grpcgrp 13499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-fv 5302 df-riota 5927 df-ov 5977 df-inn 9079 df-2 9137 df-ndx 13001 df-slot 13002 df-base 13004 df-plusg 13089 df-0g 13257 df-mgm 13355 df-sgrp 13401 df-mnd 13416 df-grp 13502 |
| This theorem is referenced by: rmodislmod 14280 |
| Copyright terms: Public domain | W3C validator |