![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpprop | GIF version |
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
grpprop.b | ⊢ (Base‘𝐾) = (Base‘𝐿) |
grpprop.p | ⊢ (+g‘𝐾) = (+g‘𝐿) |
Ref | Expression |
---|---|
grpprop | ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2194 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐾)) | |
2 | grpprop.b | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐿) | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → (Base‘𝐾) = (Base‘𝐿)) |
4 | grpprop.p | . . . . 5 ⊢ (+g‘𝐾) = (+g‘𝐿) | |
5 | 4 | oveqi 5931 | . . . 4 ⊢ (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦) |
6 | 5 | a1i 9 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
7 | 1, 3, 6 | grppropd 13089 | . 2 ⊢ (⊤ → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
8 | 7 | mptru 1373 | 1 ⊢ (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 Grpcgrp 13072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 |
This theorem is referenced by: rmodislmod 13847 |
Copyright terms: Public domain | W3C validator |