| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > oveq12i | GIF version | ||
| Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| oveq1i.1 | ⊢ 𝐴 = 𝐵 | 
| oveq12i.2 | ⊢ 𝐶 = 𝐷 | 
| Ref | Expression | 
|---|---|
| oveq12i | ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | oveq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | oveq12 5931 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 (class class class)co 5922 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: oveq123i 5936 1lt2nq 7473 halfnqq 7477 caucvgprprlemnbj 7760 caucvgprprlemaddq 7775 m1p1sr 7827 m1m1sr 7828 axi2m1 7942 negdii 8310 3t3e9 9148 8th4div3 9210 halfpm6th 9211 numma 9500 decmul10add 9525 4t3lem 9553 9t11e99 9586 halfthird 9599 5recm6rec 9600 fz0to3un2pr 10198 sqdivapi 10715 sq4e2t8 10729 i4 10734 binom2i 10740 facp1 10822 fac2 10823 fac3 10824 fac4 10825 4bc2eq6 10866 cji 11067 fsumadd 11571 fsumsplitf 11573 fsumsplitsnun 11584 0.999... 11686 fprodmul 11756 fprodsplitf 11797 ef01bndlem 11921 cos2bnd 11925 3dvds2dec 12031 flodddiv4 12101 nn0gcdsq 12368 pythagtriplem16 12448 4sqlem19 12578 dec5nprm 12583 dec2nprm 12584 numexp2x 12594 decsplit 12598 karatsuba 12599 2exp5 12601 2exp11 12605 2exp16 12606 ecqusaddd 13368 isrhm 13714 cnmpt2res 14533 txmetcnp 14754 dveflem 14962 efhalfpi 15035 efipi 15037 sin2pi 15039 ef2pi 15041 sincosq3sgn 15064 sincosq4sgn 15065 sinq34lt0t 15067 sincos4thpi 15076 tan4thpi 15077 sincos6thpi 15078 sincos3rdpi 15079 pigt3 15080 1sgm2ppw 15231 lgsdi 15278 lgsquadlem1 15318 2lgsoddprmlem3c 15350 2lgsoddprmlem3d 15351 ex-exp 15373 ex-fac 15374 ex-bc 15375 | 
| Copyright terms: Public domain | W3C validator |