![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveq12i | GIF version |
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
oveq1i.1 | ⊢ 𝐴 = 𝐵 |
oveq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
oveq12i | ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | oveq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | oveq12 5928 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 |
This theorem is referenced by: oveq123i 5933 1lt2nq 7468 halfnqq 7472 caucvgprprlemnbj 7755 caucvgprprlemaddq 7770 m1p1sr 7822 m1m1sr 7823 axi2m1 7937 negdii 8305 3t3e9 9142 8th4div3 9204 halfpm6th 9205 numma 9494 decmul10add 9519 4t3lem 9547 9t11e99 9580 halfthird 9593 5recm6rec 9594 fz0to3un2pr 10192 sqdivapi 10697 sq4e2t8 10711 i4 10716 binom2i 10722 facp1 10804 fac2 10805 fac3 10806 fac4 10807 4bc2eq6 10848 cji 11049 fsumadd 11552 fsumsplitf 11554 fsumsplitsnun 11565 0.999... 11667 fprodmul 11737 fprodsplitf 11778 ef01bndlem 11902 cos2bnd 11906 3dvds2dec 12010 flodddiv4 12078 nn0gcdsq 12341 pythagtriplem16 12420 4sqlem19 12550 ecqusaddd 13311 isrhm 13657 cnmpt2res 14476 txmetcnp 14697 dveflem 14905 efhalfpi 14975 efipi 14977 sin2pi 14979 ef2pi 14981 sincosq3sgn 15004 sincosq4sgn 15005 sinq34lt0t 15007 sincos4thpi 15016 tan4thpi 15017 sincos6thpi 15018 sincos3rdpi 15019 pigt3 15020 lgsdi 15194 lgsquadlem1 15234 2lgsoddprmlem3c 15266 2lgsoddprmlem3d 15267 ex-exp 15289 ex-fac 15290 ex-bc 15291 |
Copyright terms: Public domain | W3C validator |