![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveq12i | GIF version |
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
oveq1i.1 | ⊢ 𝐴 = 𝐵 |
oveq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
oveq12i | ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | oveq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | oveq12 5927 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: oveq123i 5932 1lt2nq 7466 halfnqq 7470 caucvgprprlemnbj 7753 caucvgprprlemaddq 7768 m1p1sr 7820 m1m1sr 7821 axi2m1 7935 negdii 8303 3t3e9 9139 8th4div3 9201 halfpm6th 9202 numma 9491 decmul10add 9516 4t3lem 9544 9t11e99 9577 halfthird 9590 5recm6rec 9591 fz0to3un2pr 10189 sqdivapi 10694 sq4e2t8 10708 i4 10713 binom2i 10719 facp1 10801 fac2 10802 fac3 10803 fac4 10804 4bc2eq6 10845 cji 11046 fsumadd 11549 fsumsplitf 11551 fsumsplitsnun 11562 0.999... 11664 fprodmul 11734 fprodsplitf 11775 ef01bndlem 11899 cos2bnd 11903 3dvds2dec 12007 flodddiv4 12075 nn0gcdsq 12338 pythagtriplem16 12417 4sqlem19 12547 ecqusaddd 13308 isrhm 13654 cnmpt2res 14465 txmetcnp 14686 dveflem 14872 efhalfpi 14934 efipi 14936 sin2pi 14938 ef2pi 14940 sincosq3sgn 14963 sincosq4sgn 14964 sinq34lt0t 14966 sincos4thpi 14975 tan4thpi 14976 sincos6thpi 14977 sincos3rdpi 14978 pigt3 14979 lgsdi 15153 lgsquadlem1 15191 2lgsoddprmlem3c 15197 2lgsoddprmlem3d 15198 ex-exp 15219 ex-fac 15220 ex-bc 15221 |
Copyright terms: Public domain | W3C validator |