ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oveq12i GIF version

Theorem oveq12i 5646
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
oveq1i.1 𝐴 = 𝐵
oveq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
oveq12i (𝐴𝐹𝐶) = (𝐵𝐹𝐷)

Proof of Theorem oveq12i
StepHypRef Expression
1 oveq1i.1 . 2 𝐴 = 𝐵
2 oveq12i.2 . 2 𝐶 = 𝐷
3 oveq12 5643 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷))
41, 2, 3mp2an 417 1 (𝐴𝐹𝐶) = (𝐵𝐹𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1289  (class class class)co 5634
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-rex 2365  df-v 2621  df-un 3001  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-br 3838  df-iota 4967  df-fv 5010  df-ov 5637
This theorem is referenced by:  oveq123i  5648  1lt2nq  6944  halfnqq  6948  caucvgprprlemnbj  7231  caucvgprprlemaddq  7246  m1p1sr  7285  m1m1sr  7286  axi2m1  7389  negdii  7745  3t3e9  8543  8th4div3  8605  halfpm6th  8606  numma  8889  decmul10add  8914  4t3lem  8942  9t11e99  8975  sqdivapi  10003  sq4e2t8  10017  i4  10022  binom2i  10028  facp1  10103  fac2  10104  fac3  10105  fac4  10106  4bc2eq6  10147  cji  10301  fsumadd  10763  fsumsplitf  10765  fsumsplitsnun  10776  0.999...  10876  3dvds2dec  10959  flodddiv4  11027  nn0gcdsq  11271  ex-exp  11311  ex-fac  11312  ex-bc  11313
  Copyright terms: Public domain W3C validator