| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oveq12i | GIF version | ||
| Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| oveq1i.1 | ⊢ 𝐴 = 𝐵 |
| oveq12i.2 | ⊢ 𝐶 = 𝐷 |
| Ref | Expression |
|---|---|
| oveq12i | ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | oveq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | oveq12 5953 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: oveq123i 5958 1lt2nq 7519 halfnqq 7523 caucvgprprlemnbj 7806 caucvgprprlemaddq 7821 m1p1sr 7873 m1m1sr 7874 axi2m1 7988 negdii 8356 3t3e9 9194 8th4div3 9256 halfpm6th 9257 numma 9547 decmul10add 9572 4t3lem 9600 9t11e99 9633 halfthird 9646 5recm6rec 9647 fz0to3un2pr 10245 sqdivapi 10768 sq4e2t8 10782 i4 10787 binom2i 10793 facp1 10875 fac2 10876 fac3 10877 fac4 10878 4bc2eq6 10919 cji 11213 fsumadd 11717 fsumsplitf 11719 fsumsplitsnun 11730 0.999... 11832 fprodmul 11902 fprodsplitf 11943 ef01bndlem 12067 cos2bnd 12071 3dvds2dec 12177 flodddiv4 12247 nn0gcdsq 12522 pythagtriplem16 12602 4sqlem19 12732 dec5nprm 12737 dec2nprm 12738 numexp2x 12748 decsplit 12752 karatsuba 12753 2exp5 12755 2exp11 12759 2exp16 12760 ecqusaddd 13574 isrhm 13920 cnmpt2res 14769 txmetcnp 14990 dveflem 15198 efhalfpi 15271 efipi 15273 sin2pi 15275 ef2pi 15277 sincosq3sgn 15300 sincosq4sgn 15301 sinq34lt0t 15303 sincos4thpi 15312 tan4thpi 15313 sincos6thpi 15314 sincos3rdpi 15315 pigt3 15316 1sgm2ppw 15467 lgsdi 15514 lgsquadlem1 15554 2lgsoddprmlem3c 15586 2lgsoddprmlem3d 15587 ex-exp 15663 ex-fac 15664 ex-bc 15665 |
| Copyright terms: Public domain | W3C validator |