Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveq12i | GIF version |
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
oveq1i.1 | ⊢ 𝐴 = 𝐵 |
oveq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
oveq12i | ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | oveq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | oveq12 5874 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-iota 5170 df-fv 5216 df-ov 5868 |
This theorem is referenced by: oveq123i 5879 1lt2nq 7380 halfnqq 7384 caucvgprprlemnbj 7667 caucvgprprlemaddq 7682 m1p1sr 7734 m1m1sr 7735 axi2m1 7849 negdii 8215 3t3e9 9049 8th4div3 9111 halfpm6th 9112 numma 9400 decmul10add 9425 4t3lem 9453 9t11e99 9486 halfthird 9499 5recm6rec 9500 fz0to3un2pr 10093 sqdivapi 10573 sq4e2t8 10587 i4 10592 binom2i 10598 facp1 10678 fac2 10679 fac3 10680 fac4 10681 4bc2eq6 10722 cji 10879 fsumadd 11382 fsumsplitf 11384 fsumsplitsnun 11395 0.999... 11497 fprodmul 11567 fprodsplitf 11608 ef01bndlem 11732 cos2bnd 11736 3dvds2dec 11838 flodddiv4 11906 nn0gcdsq 12167 pythagtriplem16 12246 cnmpt2res 13368 txmetcnp 13589 dveflem 13758 efhalfpi 13791 efipi 13793 sin2pi 13795 ef2pi 13797 sincosq3sgn 13820 sincosq4sgn 13821 sinq34lt0t 13823 sincos4thpi 13832 tan4thpi 13833 sincos6thpi 13834 sincos3rdpi 13835 pigt3 13836 lgsdi 14009 ex-exp 14039 ex-fac 14040 ex-bc 14041 |
Copyright terms: Public domain | W3C validator |