Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oveq12i | GIF version |
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
oveq1i.1 | ⊢ 𝐴 = 𝐵 |
oveq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
oveq12i | ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | oveq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | oveq12 5851 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | mp2an 423 | 1 ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: oveq123i 5856 1lt2nq 7347 halfnqq 7351 caucvgprprlemnbj 7634 caucvgprprlemaddq 7649 m1p1sr 7701 m1m1sr 7702 axi2m1 7816 negdii 8182 3t3e9 9014 8th4div3 9076 halfpm6th 9077 numma 9365 decmul10add 9390 4t3lem 9418 9t11e99 9451 halfthird 9464 5recm6rec 9465 fz0to3un2pr 10058 sqdivapi 10538 sq4e2t8 10552 i4 10557 binom2i 10563 facp1 10643 fac2 10644 fac3 10645 fac4 10646 4bc2eq6 10687 cji 10844 fsumadd 11347 fsumsplitf 11349 fsumsplitsnun 11360 0.999... 11462 fprodmul 11532 fprodsplitf 11573 ef01bndlem 11697 cos2bnd 11701 3dvds2dec 11803 flodddiv4 11871 nn0gcdsq 12132 pythagtriplem16 12211 cnmpt2res 12937 txmetcnp 13158 dveflem 13327 efhalfpi 13360 efipi 13362 sin2pi 13364 ef2pi 13366 sincosq3sgn 13389 sincosq4sgn 13390 sinq34lt0t 13392 sincos4thpi 13401 tan4thpi 13402 sincos6thpi 13403 sincos3rdpi 13404 pigt3 13405 lgsdi 13578 ex-exp 13608 ex-fac 13609 ex-bc 13610 |
Copyright terms: Public domain | W3C validator |