![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oveq12i | GIF version |
Description: Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
Ref | Expression |
---|---|
oveq1i.1 | ⊢ 𝐴 = 𝐵 |
oveq12i.2 | ⊢ 𝐶 = 𝐷 |
Ref | Expression |
---|---|
oveq12i | ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | oveq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
3 | oveq12 5883 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐷) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 (class class class)co 5874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2739 df-un 3133 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-br 4004 df-iota 5178 df-fv 5224 df-ov 5877 |
This theorem is referenced by: oveq123i 5888 1lt2nq 7404 halfnqq 7408 caucvgprprlemnbj 7691 caucvgprprlemaddq 7706 m1p1sr 7758 m1m1sr 7759 axi2m1 7873 negdii 8240 3t3e9 9075 8th4div3 9137 halfpm6th 9138 numma 9426 decmul10add 9451 4t3lem 9479 9t11e99 9512 halfthird 9525 5recm6rec 9526 fz0to3un2pr 10122 sqdivapi 10603 sq4e2t8 10617 i4 10622 binom2i 10628 facp1 10709 fac2 10710 fac3 10711 fac4 10712 4bc2eq6 10753 cji 10910 fsumadd 11413 fsumsplitf 11415 fsumsplitsnun 11426 0.999... 11528 fprodmul 11598 fprodsplitf 11639 ef01bndlem 11763 cos2bnd 11767 3dvds2dec 11870 flodddiv4 11938 nn0gcdsq 12199 pythagtriplem16 12278 cnmpt2res 13767 txmetcnp 13988 dveflem 14157 efhalfpi 14190 efipi 14192 sin2pi 14194 ef2pi 14196 sincosq3sgn 14219 sincosq4sgn 14220 sinq34lt0t 14222 sincos4thpi 14231 tan4thpi 14232 sincos6thpi 14233 sincos3rdpi 14234 pigt3 14235 lgsdi 14408 2lgsoddprmlem3c 14427 2lgsoddprmlem3d 14428 ex-exp 14449 ex-fac 14450 ex-bc 14451 |
Copyright terms: Public domain | W3C validator |