ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq1 GIF version

Theorem preq1 3695
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
preq1 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})

Proof of Theorem preq1
StepHypRef Expression
1 sneq 3629 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21uneq1d 3312 . 2 (𝐴 = 𝐵 → ({𝐴} ∪ {𝐶}) = ({𝐵} ∪ {𝐶}))
3 df-pr 3625 . 2 {𝐴, 𝐶} = ({𝐴} ∪ {𝐶})
4 df-pr 3625 . 2 {𝐵, 𝐶} = ({𝐵} ∪ {𝐶})
52, 3, 43eqtr4g 2251 1 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  cun 3151  {csn 3618  {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625
This theorem is referenced by:  preq2  3696  preq12  3697  preq1i  3698  preq1d  3701  tpeq1  3704  prnzg  3742  preq12b  3796  preq12bg  3799  opeq1  3804  uniprg  3850  intprg  3903  prexg  4240  opthreg  4588  bdxmet  14669  hovera  14801  hoverb  14802  hoverlt1  14803  hovergt0  14804  ivthdich  14807  bj-prexg  15403
  Copyright terms: Public domain W3C validator