| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq1 | GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| preq1 | ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3677 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 2 | 1 | uneq1d 3357 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐴} ∪ {𝐶}) = ({𝐵} ∪ {𝐶})) |
| 3 | df-pr 3673 | . 2 ⊢ {𝐴, 𝐶} = ({𝐴} ∪ {𝐶}) | |
| 4 | df-pr 3673 | . 2 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∪ cun 3195 {csn 3666 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: preq2 3744 preq12 3745 preq1i 3746 preq1d 3749 tpeq1 3752 prnzg 3791 preq12b 3847 preq12bg 3850 opeq1 3856 uniprg 3902 intprg 3955 prexg 4294 opthreg 4647 en2 6971 bdxmet 15169 hovera 15315 hoverb 15316 hoverlt1 15317 hovergt0 15318 ivthdich 15321 upgrex 15897 usgredg4 16007 usgredg2vlem2 16015 usgredg2v 16016 bj-prexg 16232 |
| Copyright terms: Public domain | W3C validator |