ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq1 GIF version

Theorem preq1 3743
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
preq1 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})

Proof of Theorem preq1
StepHypRef Expression
1 sneq 3677 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21uneq1d 3357 . 2 (𝐴 = 𝐵 → ({𝐴} ∪ {𝐶}) = ({𝐵} ∪ {𝐶}))
3 df-pr 3673 . 2 {𝐴, 𝐶} = ({𝐴} ∪ {𝐶})
4 df-pr 3673 . 2 {𝐵, 𝐶} = ({𝐵} ∪ {𝐶})
52, 3, 43eqtr4g 2287 1 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  cun 3195  {csn 3666  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  preq2  3744  preq12  3745  preq1i  3746  preq1d  3749  tpeq1  3752  prnzg  3791  preq12b  3847  preq12bg  3850  opeq1  3856  uniprg  3902  intprg  3955  prexg  4294  opthreg  4647  en2  6971  bdxmet  15169  hovera  15315  hoverb  15316  hoverlt1  15317  hovergt0  15318  ivthdich  15321  upgrex  15897  usgredg4  16007  usgredg2vlem2  16015  usgredg2v  16016  bj-prexg  16232
  Copyright terms: Public domain W3C validator