Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > preq1 | GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
preq1 | ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3600 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | 1 | uneq1d 3286 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐴} ∪ {𝐶}) = ({𝐵} ∪ {𝐶})) |
3 | df-pr 3596 | . 2 ⊢ {𝐴, 𝐶} = ({𝐴} ∪ {𝐶}) | |
4 | df-pr 3596 | . 2 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
5 | 2, 3, 4 | 3eqtr4g 2233 | 1 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∪ cun 3125 {csn 3589 {cpr 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 |
This theorem is referenced by: preq2 3667 preq12 3668 preq1i 3669 preq1d 3672 tpeq1 3675 prnzg 3713 preq12b 3766 preq12bg 3769 opeq1 3774 uniprg 3820 intprg 3873 prexg 4205 opthreg 4549 bdxmet 13552 bj-prexg 14203 |
Copyright terms: Public domain | W3C validator |