| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preq1 | GIF version | ||
| Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| preq1 | ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3634 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
| 2 | 1 | uneq1d 3317 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐴} ∪ {𝐶}) = ({𝐵} ∪ {𝐶})) |
| 3 | df-pr 3630 | . 2 ⊢ {𝐴, 𝐶} = ({𝐴} ∪ {𝐶}) | |
| 4 | df-pr 3630 | . 2 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∪ cun 3155 {csn 3623 {cpr 3624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 |
| This theorem is referenced by: preq2 3701 preq12 3702 preq1i 3703 preq1d 3706 tpeq1 3709 prnzg 3747 preq12b 3801 preq12bg 3804 opeq1 3809 uniprg 3855 intprg 3908 prexg 4245 opthreg 4593 bdxmet 14821 hovera 14967 hoverb 14968 hoverlt1 14969 hovergt0 14970 ivthdich 14973 bj-prexg 15641 |
| Copyright terms: Public domain | W3C validator |