![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > preq1 | GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
preq1 | ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3605 | . . 3 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐵}) | |
2 | 1 | uneq1d 3290 | . 2 ⊢ (𝐴 = 𝐵 → ({𝐴} ∪ {𝐶}) = ({𝐵} ∪ {𝐶})) |
3 | df-pr 3601 | . 2 ⊢ {𝐴, 𝐶} = ({𝐴} ∪ {𝐶}) | |
4 | df-pr 3601 | . 2 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
5 | 2, 3, 4 | 3eqtr4g 2235 | 1 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∪ cun 3129 {csn 3594 {cpr 3595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 |
This theorem is referenced by: preq2 3672 preq12 3673 preq1i 3674 preq1d 3677 tpeq1 3680 prnzg 3718 preq12b 3772 preq12bg 3775 opeq1 3780 uniprg 3826 intprg 3879 prexg 4213 opthreg 4557 bdxmet 14086 bj-prexg 14748 |
Copyright terms: Public domain | W3C validator |