ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq1 GIF version

Theorem preq1 3714
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
preq1 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})

Proof of Theorem preq1
StepHypRef Expression
1 sneq 3648 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21uneq1d 3330 . 2 (𝐴 = 𝐵 → ({𝐴} ∪ {𝐶}) = ({𝐵} ∪ {𝐶}))
3 df-pr 3644 . 2 {𝐴, 𝐶} = ({𝐴} ∪ {𝐶})
4 df-pr 3644 . 2 {𝐵, 𝐶} = ({𝐵} ∪ {𝐶})
52, 3, 43eqtr4g 2264 1 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cun 3168  {csn 3637  {cpr 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-sn 3643  df-pr 3644
This theorem is referenced by:  preq2  3715  preq12  3716  preq1i  3717  preq1d  3720  tpeq1  3723  prnzg  3762  preq12b  3816  preq12bg  3819  opeq1  3824  uniprg  3870  intprg  3923  prexg  4262  opthreg  4611  en2  6925  bdxmet  15043  hovera  15189  hoverb  15190  hoverlt1  15191  hovergt0  15192  ivthdich  15195  upgrex  15769  bj-prexg  15981
  Copyright terms: Public domain W3C validator