ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq1 GIF version

Theorem preq1 3671
Description: Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
preq1 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})

Proof of Theorem preq1
StepHypRef Expression
1 sneq 3605 . . 3 (𝐴 = 𝐵 → {𝐴} = {𝐵})
21uneq1d 3290 . 2 (𝐴 = 𝐵 → ({𝐴} ∪ {𝐶}) = ({𝐵} ∪ {𝐶}))
3 df-pr 3601 . 2 {𝐴, 𝐶} = ({𝐴} ∪ {𝐶})
4 df-pr 3601 . 2 {𝐵, 𝐶} = ({𝐵} ∪ {𝐶})
52, 3, 43eqtr4g 2235 1 (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  cun 3129  {csn 3594  {cpr 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601
This theorem is referenced by:  preq2  3672  preq12  3673  preq1i  3674  preq1d  3677  tpeq1  3680  prnzg  3718  preq12b  3772  preq12bg  3775  opeq1  3780  uniprg  3826  intprg  3879  prexg  4213  opthreg  4557  bdxmet  14086  bj-prexg  14748
  Copyright terms: Public domain W3C validator