![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspprss | GIF version |
Description: The span of a pair of vectors in a subspace belongs to the subspace. (Contributed by NM, 12-Jan-2015.) |
Ref | Expression |
---|---|
lspprss.s | β’ π = (LSubSpβπ) |
lspprss.n | β’ π = (LSpanβπ) |
lspprss.w | β’ (π β π β LMod) |
lspprss.u | β’ (π β π β π) |
lspprss.x | β’ (π β π β π) |
lspprss.y | β’ (π β π β π) |
Ref | Expression |
---|---|
lspprss | β’ (π β (πβ{π, π}) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprss.w | . 2 β’ (π β π β LMod) | |
2 | lspprss.u | . 2 β’ (π β π β π) | |
3 | lspprss.x | . . 3 β’ (π β π β π) | |
4 | lspprss.y | . . 3 β’ (π β π β π) | |
5 | 3, 4 | prssd 3763 | . 2 β’ (π β {π, π} β π) |
6 | lspprss.s | . . 3 β’ π = (LSubSpβπ) | |
7 | lspprss.n | . . 3 β’ π = (LSpanβπ) | |
8 | 6, 7 | lspssp 13555 | . 2 β’ ((π β LMod β§ π β π β§ {π, π} β π) β (πβ{π, π}) β π) |
9 | 1, 2, 5, 8 | syl3anc 1248 | 1 β’ (π β (πβ{π, π}) β π) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1363 β wcel 2158 β wss 3141 {cpr 3605 βcfv 5228 LModclmod 13439 LSubSpclss 13504 LSpanclspn 13538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-cnex 7915 ax-resscn 7916 ax-1re 7918 ax-addrcl 7921 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-inn 8933 df-2 8991 df-3 8992 df-4 8993 df-5 8994 df-6 8995 df-ndx 12478 df-slot 12479 df-base 12481 df-plusg 12563 df-mulr 12564 df-sca 12566 df-vsca 12567 df-0g 12724 df-mgm 12793 df-sgrp 12826 df-mnd 12837 df-grp 12899 df-lmod 13441 df-lssm 13505 df-lsp 13539 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |