ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnzr2 GIF version

Theorem isnzr2 13658
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
isnzr2.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnzr2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))

Proof of Theorem isnzr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2193 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 13655 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
4 isnzr2.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
54, 1ringidcl 13494 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
65adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ∈ 𝐵)
74, 2ring0cl 13495 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
87adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (0g𝑅) ∈ 𝐵)
9 simpr 110 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ≠ (0g𝑅))
10 df-ne 2365 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
11 neeq1 2377 . . . . . . . . 9 (𝑥 = (1r𝑅) → (𝑥𝑦 ↔ (1r𝑅) ≠ 𝑦))
1210, 11bitr3id 194 . . . . . . . 8 (𝑥 = (1r𝑅) → (¬ 𝑥 = 𝑦 ↔ (1r𝑅) ≠ 𝑦))
13 neeq2 2378 . . . . . . . 8 (𝑦 = (0g𝑅) → ((1r𝑅) ≠ 𝑦 ↔ (1r𝑅) ≠ (0g𝑅)))
1412, 13rspc2ev 2879 . . . . . . 7 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
156, 8, 9, 14syl3anc 1249 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
1615ex 115 . . . . 5 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
174, 1, 2ring1eq0 13522 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
18173expb 1206 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
1918necon3bd 2407 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2019rexlimdvva 2619 . . . . 5 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2116, 20impbid 129 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
22 simpl 109 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 𝑥𝐵)
23 simprl 529 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 𝑦𝐵)
24 simprr 531 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → ¬ 𝑥 = 𝑦)
2522, 23, 24enpr2d 6862 . . . . . . . . . . 11 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → {𝑥, 𝑦} ≈ 2o)
2625adantl 277 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → {𝑥, 𝑦} ≈ 2o)
2726ensymd 6828 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → 2o ≈ {𝑥, 𝑦})
28 basfn 12663 . . . . . . . . . . . . 13 Base Fn V
29 elex 2771 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ V)
30 funfvex 5563 . . . . . . . . . . . . . 14 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
3130funfni 5346 . . . . . . . . . . . . 13 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
3228, 29, 31sylancr 414 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
334, 32eqeltrid 2280 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐵 ∈ V)
34 ssdomg 6823 . . . . . . . . . . 11 (𝐵 ∈ V → ({𝑥, 𝑦} ⊆ 𝐵 → {𝑥, 𝑦} ≼ 𝐵))
3533, 34syl 14 . . . . . . . . . 10 (𝑅 ∈ Ring → ({𝑥, 𝑦} ⊆ 𝐵 → {𝑥, 𝑦} ≼ 𝐵))
3622, 23prssd 3777 . . . . . . . . . 10 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → {𝑥, 𝑦} ⊆ 𝐵)
3735, 36impel 280 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → {𝑥, 𝑦} ≼ 𝐵)
38 endomtr 6835 . . . . . . . . 9 ((2o ≈ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ≼ 𝐵) → 2o𝐵)
3927, 37, 38syl2anc 411 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → 2o𝐵)
4039anassrs 400 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 2o𝐵)
4140rexlimdvaa 2612 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (∃𝑦𝐵 ¬ 𝑥 = 𝑦 → 2o𝐵))
4241rexlimdva 2611 . . . . 5 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 → 2o𝐵))
43 2dom 6850 . . . . 5 (2o𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
4442, 43impbid1 142 . . . 4 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 ↔ 2o𝐵))
4521, 44bitrd 188 . . 3 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ 2o𝐵))
4645pm5.32i 454 . 2 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
473, 46bitri 184 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wne 2364  wrex 2473  Vcvv 2760  wss 3153  {cpr 3619   class class class wbr 4029   Fn wfn 5241  cfv 5246  2oc2o 6454  cen 6783  cdom 6784  Basecbs 12605  0gc0g 12854  1rcur 13433  Ringcrg 13470  NzRingcnzr 13653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4462  ax-setind 4565  ax-cnex 7953  ax-resscn 7954  ax-1cn 7955  ax-1re 7956  ax-icn 7957  ax-addcl 7958  ax-addrcl 7959  ax-mulcl 7960  ax-addcom 7962  ax-addass 7964  ax-i2m1 7967  ax-0lt1 7968  ax-0id 7970  ax-rnegex 7971  ax-pre-ltirr 7974  ax-pre-ltadd 7978
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4322  df-iord 4395  df-on 4397  df-suc 4400  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-riota 5865  df-ov 5913  df-oprab 5914  df-mpo 5915  df-1o 6460  df-2o 6461  df-er 6578  df-en 6786  df-dom 6787  df-pnf 8046  df-mnf 8047  df-ltxr 8049  df-inn 8973  df-2 9031  df-3 9032  df-ndx 12608  df-slot 12609  df-base 12611  df-sets 12612  df-plusg 12695  df-mulr 12696  df-0g 12856  df-mgm 12926  df-sgrp 12972  df-mnd 12985  df-grp 13062  df-minusg 13063  df-mgp 13395  df-ur 13434  df-ring 13472  df-nzr 13654
This theorem is referenced by:  znidom  14116  znidomb  14117
  Copyright terms: Public domain W3C validator