ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnzr2 GIF version

Theorem isnzr2 14156
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
isnzr2.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnzr2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))

Proof of Theorem isnzr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2229 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 14153 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
4 isnzr2.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
54, 1ringidcl 13991 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
65adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ∈ 𝐵)
74, 2ring0cl 13992 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
87adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (0g𝑅) ∈ 𝐵)
9 simpr 110 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ≠ (0g𝑅))
10 df-ne 2401 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
11 neeq1 2413 . . . . . . . . 9 (𝑥 = (1r𝑅) → (𝑥𝑦 ↔ (1r𝑅) ≠ 𝑦))
1210, 11bitr3id 194 . . . . . . . 8 (𝑥 = (1r𝑅) → (¬ 𝑥 = 𝑦 ↔ (1r𝑅) ≠ 𝑦))
13 neeq2 2414 . . . . . . . 8 (𝑦 = (0g𝑅) → ((1r𝑅) ≠ 𝑦 ↔ (1r𝑅) ≠ (0g𝑅)))
1412, 13rspc2ev 2922 . . . . . . 7 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
156, 8, 9, 14syl3anc 1271 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
1615ex 115 . . . . 5 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
174, 1, 2ring1eq0 14019 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
18173expb 1228 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
1918necon3bd 2443 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2019rexlimdvva 2656 . . . . 5 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2116, 20impbid 129 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
22 simpl 109 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 𝑥𝐵)
23 simprl 529 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 𝑦𝐵)
24 simprr 531 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → ¬ 𝑥 = 𝑦)
2522, 23, 24enpr2d 6980 . . . . . . . . . . 11 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → {𝑥, 𝑦} ≈ 2o)
2625adantl 277 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → {𝑥, 𝑦} ≈ 2o)
2726ensymd 6943 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → 2o ≈ {𝑥, 𝑦})
28 basfn 13099 . . . . . . . . . . . . 13 Base Fn V
29 elex 2811 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ V)
30 funfvex 5646 . . . . . . . . . . . . . 14 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
3130funfni 5423 . . . . . . . . . . . . 13 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
3228, 29, 31sylancr 414 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
334, 32eqeltrid 2316 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐵 ∈ V)
34 ssdomg 6938 . . . . . . . . . . 11 (𝐵 ∈ V → ({𝑥, 𝑦} ⊆ 𝐵 → {𝑥, 𝑦} ≼ 𝐵))
3533, 34syl 14 . . . . . . . . . 10 (𝑅 ∈ Ring → ({𝑥, 𝑦} ⊆ 𝐵 → {𝑥, 𝑦} ≼ 𝐵))
3622, 23prssd 3827 . . . . . . . . . 10 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → {𝑥, 𝑦} ⊆ 𝐵)
3735, 36impel 280 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → {𝑥, 𝑦} ≼ 𝐵)
38 endomtr 6950 . . . . . . . . 9 ((2o ≈ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ≼ 𝐵) → 2o𝐵)
3927, 37, 38syl2anc 411 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → 2o𝐵)
4039anassrs 400 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 2o𝐵)
4140rexlimdvaa 2649 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (∃𝑦𝐵 ¬ 𝑥 = 𝑦 → 2o𝐵))
4241rexlimdva 2648 . . . . 5 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 → 2o𝐵))
43 2dom 6966 . . . . 5 (2o𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
4442, 43impbid1 142 . . . 4 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 ↔ 2o𝐵))
4521, 44bitrd 188 . . 3 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ 2o𝐵))
4645pm5.32i 454 . 2 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
473, 46bitri 184 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wrex 2509  Vcvv 2799  wss 3197  {cpr 3667   class class class wbr 4083   Fn wfn 5313  cfv 5318  2oc2o 6562  cen 6893  cdom 6894  Basecbs 13040  0gc0g 13297  1rcur 13930  Ringcrg 13967  NzRingcnzr 14151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-dom 6897  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-mgp 13892  df-ur 13931  df-ring 13969  df-nzr 14152
This theorem is referenced by:  znidom  14629  znidomb  14630
  Copyright terms: Public domain W3C validator