ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnzr2 GIF version

Theorem isnzr2 13816
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
isnzr2.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnzr2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))

Proof of Theorem isnzr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2196 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 13813 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
4 isnzr2.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
54, 1ringidcl 13652 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
65adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ∈ 𝐵)
74, 2ring0cl 13653 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
87adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (0g𝑅) ∈ 𝐵)
9 simpr 110 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ≠ (0g𝑅))
10 df-ne 2368 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
11 neeq1 2380 . . . . . . . . 9 (𝑥 = (1r𝑅) → (𝑥𝑦 ↔ (1r𝑅) ≠ 𝑦))
1210, 11bitr3id 194 . . . . . . . 8 (𝑥 = (1r𝑅) → (¬ 𝑥 = 𝑦 ↔ (1r𝑅) ≠ 𝑦))
13 neeq2 2381 . . . . . . . 8 (𝑦 = (0g𝑅) → ((1r𝑅) ≠ 𝑦 ↔ (1r𝑅) ≠ (0g𝑅)))
1412, 13rspc2ev 2883 . . . . . . 7 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
156, 8, 9, 14syl3anc 1249 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
1615ex 115 . . . . 5 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
174, 1, 2ring1eq0 13680 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
18173expb 1206 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
1918necon3bd 2410 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2019rexlimdvva 2622 . . . . 5 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2116, 20impbid 129 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
22 simpl 109 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 𝑥𝐵)
23 simprl 529 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 𝑦𝐵)
24 simprr 531 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → ¬ 𝑥 = 𝑦)
2522, 23, 24enpr2d 6885 . . . . . . . . . . 11 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → {𝑥, 𝑦} ≈ 2o)
2625adantl 277 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → {𝑥, 𝑦} ≈ 2o)
2726ensymd 6851 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → 2o ≈ {𝑥, 𝑦})
28 basfn 12761 . . . . . . . . . . . . 13 Base Fn V
29 elex 2774 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ V)
30 funfvex 5578 . . . . . . . . . . . . . 14 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
3130funfni 5361 . . . . . . . . . . . . 13 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
3228, 29, 31sylancr 414 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
334, 32eqeltrid 2283 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐵 ∈ V)
34 ssdomg 6846 . . . . . . . . . . 11 (𝐵 ∈ V → ({𝑥, 𝑦} ⊆ 𝐵 → {𝑥, 𝑦} ≼ 𝐵))
3533, 34syl 14 . . . . . . . . . 10 (𝑅 ∈ Ring → ({𝑥, 𝑦} ⊆ 𝐵 → {𝑥, 𝑦} ≼ 𝐵))
3622, 23prssd 3782 . . . . . . . . . 10 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → {𝑥, 𝑦} ⊆ 𝐵)
3735, 36impel 280 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → {𝑥, 𝑦} ≼ 𝐵)
38 endomtr 6858 . . . . . . . . 9 ((2o ≈ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ≼ 𝐵) → 2o𝐵)
3927, 37, 38syl2anc 411 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → 2o𝐵)
4039anassrs 400 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 2o𝐵)
4140rexlimdvaa 2615 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (∃𝑦𝐵 ¬ 𝑥 = 𝑦 → 2o𝐵))
4241rexlimdva 2614 . . . . 5 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 → 2o𝐵))
43 2dom 6873 . . . . 5 (2o𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
4442, 43impbid1 142 . . . 4 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 ↔ 2o𝐵))
4521, 44bitrd 188 . . 3 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ 2o𝐵))
4645pm5.32i 454 . 2 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
473, 46bitri 184 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  wrex 2476  Vcvv 2763  wss 3157  {cpr 3624   class class class wbr 4034   Fn wfn 5254  cfv 5259  2oc2o 6477  cen 6806  cdom 6807  Basecbs 12703  0gc0g 12958  1rcur 13591  Ringcrg 13628  NzRingcnzr 13811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-dom 6810  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-mgp 13553  df-ur 13592  df-ring 13630  df-nzr 13812
This theorem is referenced by:  znidom  14289  znidomb  14290
  Copyright terms: Public domain W3C validator