ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnzr2 GIF version

Theorem isnzr2 13740
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
isnzr2.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnzr2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))

Proof of Theorem isnzr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2196 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 13737 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
4 isnzr2.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
54, 1ringidcl 13576 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
65adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ∈ 𝐵)
74, 2ring0cl 13577 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
87adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (0g𝑅) ∈ 𝐵)
9 simpr 110 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ≠ (0g𝑅))
10 df-ne 2368 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
11 neeq1 2380 . . . . . . . . 9 (𝑥 = (1r𝑅) → (𝑥𝑦 ↔ (1r𝑅) ≠ 𝑦))
1210, 11bitr3id 194 . . . . . . . 8 (𝑥 = (1r𝑅) → (¬ 𝑥 = 𝑦 ↔ (1r𝑅) ≠ 𝑦))
13 neeq2 2381 . . . . . . . 8 (𝑦 = (0g𝑅) → ((1r𝑅) ≠ 𝑦 ↔ (1r𝑅) ≠ (0g𝑅)))
1412, 13rspc2ev 2883 . . . . . . 7 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
156, 8, 9, 14syl3anc 1249 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
1615ex 115 . . . . 5 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
174, 1, 2ring1eq0 13604 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
18173expb 1206 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
1918necon3bd 2410 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2019rexlimdvva 2622 . . . . 5 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2116, 20impbid 129 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
22 simpl 109 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 𝑥𝐵)
23 simprl 529 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 𝑦𝐵)
24 simprr 531 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → ¬ 𝑥 = 𝑦)
2522, 23, 24enpr2d 6876 . . . . . . . . . . 11 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → {𝑥, 𝑦} ≈ 2o)
2625adantl 277 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → {𝑥, 𝑦} ≈ 2o)
2726ensymd 6842 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → 2o ≈ {𝑥, 𝑦})
28 basfn 12736 . . . . . . . . . . . . 13 Base Fn V
29 elex 2774 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ V)
30 funfvex 5575 . . . . . . . . . . . . . 14 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
3130funfni 5358 . . . . . . . . . . . . 13 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
3228, 29, 31sylancr 414 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
334, 32eqeltrid 2283 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐵 ∈ V)
34 ssdomg 6837 . . . . . . . . . . 11 (𝐵 ∈ V → ({𝑥, 𝑦} ⊆ 𝐵 → {𝑥, 𝑦} ≼ 𝐵))
3533, 34syl 14 . . . . . . . . . 10 (𝑅 ∈ Ring → ({𝑥, 𝑦} ⊆ 𝐵 → {𝑥, 𝑦} ≼ 𝐵))
3622, 23prssd 3781 . . . . . . . . . 10 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → {𝑥, 𝑦} ⊆ 𝐵)
3735, 36impel 280 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → {𝑥, 𝑦} ≼ 𝐵)
38 endomtr 6849 . . . . . . . . 9 ((2o ≈ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ≼ 𝐵) → 2o𝐵)
3927, 37, 38syl2anc 411 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → 2o𝐵)
4039anassrs 400 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 2o𝐵)
4140rexlimdvaa 2615 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (∃𝑦𝐵 ¬ 𝑥 = 𝑦 → 2o𝐵))
4241rexlimdva 2614 . . . . 5 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 → 2o𝐵))
43 2dom 6864 . . . . 5 (2o𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
4442, 43impbid1 142 . . . 4 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 ↔ 2o𝐵))
4521, 44bitrd 188 . . 3 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ 2o𝐵))
4645pm5.32i 454 . 2 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
473, 46bitri 184 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367  wrex 2476  Vcvv 2763  wss 3157  {cpr 3623   class class class wbr 4033   Fn wfn 5253  cfv 5258  2oc2o 6468  cen 6797  cdom 6798  Basecbs 12678  0gc0g 12927  1rcur 13515  Ringcrg 13552  NzRingcnzr 13735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1o 6474  df-2o 6475  df-er 6592  df-en 6800  df-dom 6801  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mgp 13477  df-ur 13516  df-ring 13554  df-nzr 13736
This theorem is referenced by:  znidom  14213  znidomb  14214
  Copyright terms: Public domain W3C validator