ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnzr2 GIF version

Theorem isnzr2 13683
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
isnzr2.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnzr2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))

Proof of Theorem isnzr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2193 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 13680 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
4 isnzr2.b . . . . . . . . 9 𝐵 = (Base‘𝑅)
54, 1ringidcl 13519 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
65adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ∈ 𝐵)
74, 2ring0cl 13520 . . . . . . . 8 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
87adantr 276 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (0g𝑅) ∈ 𝐵)
9 simpr 110 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ≠ (0g𝑅))
10 df-ne 2365 . . . . . . . . 9 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
11 neeq1 2377 . . . . . . . . 9 (𝑥 = (1r𝑅) → (𝑥𝑦 ↔ (1r𝑅) ≠ 𝑦))
1210, 11bitr3id 194 . . . . . . . 8 (𝑥 = (1r𝑅) → (¬ 𝑥 = 𝑦 ↔ (1r𝑅) ≠ 𝑦))
13 neeq2 2378 . . . . . . . 8 (𝑦 = (0g𝑅) → ((1r𝑅) ≠ 𝑦 ↔ (1r𝑅) ≠ (0g𝑅)))
1412, 13rspc2ev 2880 . . . . . . 7 (((1r𝑅) ∈ 𝐵 ∧ (0g𝑅) ∈ 𝐵 ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
156, 8, 9, 14syl3anc 1249 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
1615ex 115 . . . . 5 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
174, 1, 2ring1eq0 13547 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
18173expb 1206 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
1918necon3bd 2407 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵)) → (¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2019rexlimdvva 2619 . . . . 5 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 → (1r𝑅) ≠ (0g𝑅)))
2116, 20impbid 129 . . . 4 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦))
22 simpl 109 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 𝑥𝐵)
23 simprl 529 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 𝑦𝐵)
24 simprr 531 . . . . . . . . . . . 12 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → ¬ 𝑥 = 𝑦)
2522, 23, 24enpr2d 6873 . . . . . . . . . . 11 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → {𝑥, 𝑦} ≈ 2o)
2625adantl 277 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → {𝑥, 𝑦} ≈ 2o)
2726ensymd 6839 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → 2o ≈ {𝑥, 𝑦})
28 basfn 12679 . . . . . . . . . . . . 13 Base Fn V
29 elex 2771 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ V)
30 funfvex 5572 . . . . . . . . . . . . . 14 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
3130funfni 5355 . . . . . . . . . . . . 13 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
3228, 29, 31sylancr 414 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (Base‘𝑅) ∈ V)
334, 32eqeltrid 2280 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝐵 ∈ V)
34 ssdomg 6834 . . . . . . . . . . 11 (𝐵 ∈ V → ({𝑥, 𝑦} ⊆ 𝐵 → {𝑥, 𝑦} ≼ 𝐵))
3533, 34syl 14 . . . . . . . . . 10 (𝑅 ∈ Ring → ({𝑥, 𝑦} ⊆ 𝐵 → {𝑥, 𝑦} ≼ 𝐵))
3622, 23prssd 3778 . . . . . . . . . 10 ((𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → {𝑥, 𝑦} ⊆ 𝐵)
3735, 36impel 280 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → {𝑥, 𝑦} ≼ 𝐵)
38 endomtr 6846 . . . . . . . . 9 ((2o ≈ {𝑥, 𝑦} ∧ {𝑥, 𝑦} ≼ 𝐵) → 2o𝐵)
3927, 37, 38syl2anc 411 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑥𝐵 ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦))) → 2o𝐵)
4039anassrs 400 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑥𝐵) ∧ (𝑦𝐵 ∧ ¬ 𝑥 = 𝑦)) → 2o𝐵)
4140rexlimdvaa 2612 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥𝐵) → (∃𝑦𝐵 ¬ 𝑥 = 𝑦 → 2o𝐵))
4241rexlimdva 2611 . . . . 5 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 → 2o𝐵))
43 2dom 6861 . . . . 5 (2o𝐵 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦)
4442, 43impbid1 142 . . . 4 (𝑅 ∈ Ring → (∃𝑥𝐵𝑦𝐵 ¬ 𝑥 = 𝑦 ↔ 2o𝐵))
4521, 44bitrd 188 . . 3 (𝑅 ∈ Ring → ((1r𝑅) ≠ (0g𝑅) ↔ 2o𝐵))
4645pm5.32i 454 . 2 ((𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)) ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
473, 46bitri 184 1 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wne 2364  wrex 2473  Vcvv 2760  wss 3154  {cpr 3620   class class class wbr 4030   Fn wfn 5250  cfv 5255  2oc2o 6465  cen 6794  cdom 6795  Basecbs 12621  0gc0g 12870  1rcur 13458  Ringcrg 13495  NzRingcnzr 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1o 6471  df-2o 6472  df-er 6589  df-en 6797  df-dom 6798  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-mgp 13420  df-ur 13459  df-ring 13497  df-nzr 13679
This theorem is referenced by:  znidom  14156  znidomb  14157
  Copyright terms: Public domain W3C validator