ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bassetsnn GIF version

Theorem bassetsnn 13097
Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021.) (Revised by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
basprssdmsets.s (𝜑𝑆 Struct 𝑋)
bassetsnn.i (𝜑𝐼 ∈ ℕ)
basprssdmsets.w (𝜑𝐸𝑊)
basprssdmsets.b (𝜑 → (Base‘ndx) ∈ dom 𝑆)
Assertion
Ref Expression
bassetsnn (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))

Proof of Theorem bassetsnn
StepHypRef Expression
1 simpr 110 . . . 4 ((𝜑 ∧ (Base‘ndx) = 𝐼) → (Base‘ndx) = 𝐼)
2 bassetsnn.i . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
3 snidg 3695 . . . . . . . . . 10 (𝐼 ∈ ℕ → 𝐼 ∈ {𝐼})
42, 3syl 14 . . . . . . . . 9 (𝜑𝐼 ∈ {𝐼})
5 basprssdmsets.w . . . . . . . . . 10 (𝜑𝐸𝑊)
6 dmsnopg 5200 . . . . . . . . . 10 (𝐸𝑊 → dom {⟨𝐼, 𝐸⟩} = {𝐼})
75, 6syl 14 . . . . . . . . 9 (𝜑 → dom {⟨𝐼, 𝐸⟩} = {𝐼})
84, 7eleqtrrd 2309 . . . . . . . 8 (𝜑𝐼 ∈ dom {⟨𝐼, 𝐸⟩})
9 elun2 3372 . . . . . . . 8 (𝐼 ∈ dom {⟨𝐼, 𝐸⟩} → 𝐼 ∈ (dom (𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ dom {⟨𝐼, 𝐸⟩}))
108, 9syl 14 . . . . . . 7 (𝜑𝐼 ∈ (dom (𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ dom {⟨𝐼, 𝐸⟩}))
11 dmun 4930 . . . . . . 7 dom ((𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}) = (dom (𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ dom {⟨𝐼, 𝐸⟩})
1210, 11eleqtrrdi 2323 . . . . . 6 (𝜑𝐼 ∈ dom ((𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
13 basprssdmsets.s . . . . . . . . 9 (𝜑𝑆 Struct 𝑋)
14 structex 13052 . . . . . . . . 9 (𝑆 Struct 𝑋𝑆 ∈ V)
1513, 14syl 14 . . . . . . . 8 (𝜑𝑆 ∈ V)
16 opexg 4314 . . . . . . . . 9 ((𝐼 ∈ ℕ ∧ 𝐸𝑊) → ⟨𝐼, 𝐸⟩ ∈ V)
172, 5, 16syl2anc 411 . . . . . . . 8 (𝜑 → ⟨𝐼, 𝐸⟩ ∈ V)
18 setsvalg 13070 . . . . . . . 8 ((𝑆 ∈ V ∧ ⟨𝐼, 𝐸⟩ ∈ V) → (𝑆 sSet ⟨𝐼, 𝐸⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
1915, 17, 18syl2anc 411 . . . . . . 7 (𝜑 → (𝑆 sSet ⟨𝐼, 𝐸⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
2019dmeqd 4925 . . . . . 6 (𝜑 → dom (𝑆 sSet ⟨𝐼, 𝐸⟩) = dom ((𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
2112, 20eleqtrrd 2309 . . . . 5 (𝜑𝐼 ∈ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))
2221adantr 276 . . . 4 ((𝜑 ∧ (Base‘ndx) = 𝐼) → 𝐼 ∈ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))
231, 22eqeltrd 2306 . . 3 ((𝜑 ∧ (Base‘ndx) = 𝐼) → (Base‘ndx) ∈ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))
24 basendxnn 13096 . . . . . . . . . . 11 (Base‘ndx) ∈ ℕ
2524elexi 2812 . . . . . . . . . 10 (Base‘ndx) ∈ V
2625a1i 9 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘ndx) = 𝐼) → (Base‘ndx) ∈ V)
27 simpr 110 . . . . . . . . . . . 12 ((𝜑 ∧ (Base‘ndx) ∈ dom {⟨𝐼, 𝐸⟩}) → (Base‘ndx) ∈ dom {⟨𝐼, 𝐸⟩})
287adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (Base‘ndx) ∈ dom {⟨𝐼, 𝐸⟩}) → dom {⟨𝐼, 𝐸⟩} = {𝐼})
2927, 28eleqtrd 2308 . . . . . . . . . . 11 ((𝜑 ∧ (Base‘ndx) ∈ dom {⟨𝐼, 𝐸⟩}) → (Base‘ndx) ∈ {𝐼})
30 elsni 3684 . . . . . . . . . . 11 ((Base‘ndx) ∈ {𝐼} → (Base‘ndx) = 𝐼)
3129, 30syl 14 . . . . . . . . . 10 ((𝜑 ∧ (Base‘ndx) ∈ dom {⟨𝐼, 𝐸⟩}) → (Base‘ndx) = 𝐼)
3231stoic1a 1469 . . . . . . . . 9 ((𝜑 ∧ ¬ (Base‘ndx) = 𝐼) → ¬ (Base‘ndx) ∈ dom {⟨𝐼, 𝐸⟩})
3326, 32eldifd 3207 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘ndx) = 𝐼) → (Base‘ndx) ∈ (V ∖ dom {⟨𝐼, 𝐸⟩}))
34 basprssdmsets.b . . . . . . . . 9 (𝜑 → (Base‘ndx) ∈ dom 𝑆)
3534adantr 276 . . . . . . . 8 ((𝜑 ∧ ¬ (Base‘ndx) = 𝐼) → (Base‘ndx) ∈ dom 𝑆)
3633, 35elind 3389 . . . . . . 7 ((𝜑 ∧ ¬ (Base‘ndx) = 𝐼) → (Base‘ndx) ∈ ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝑆))
37 dmres 5026 . . . . . . 7 dom (𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) = ((V ∖ dom {⟨𝐼, 𝐸⟩}) ∩ dom 𝑆)
3836, 37eleqtrrdi 2323 . . . . . 6 ((𝜑 ∧ ¬ (Base‘ndx) = 𝐼) → (Base‘ndx) ∈ dom (𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})))
39 elun1 3371 . . . . . 6 ((Base‘ndx) ∈ dom (𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) → (Base‘ndx) ∈ (dom (𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ dom {⟨𝐼, 𝐸⟩}))
4038, 39syl 14 . . . . 5 ((𝜑 ∧ ¬ (Base‘ndx) = 𝐼) → (Base‘ndx) ∈ (dom (𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ dom {⟨𝐼, 𝐸⟩}))
4140, 11eleqtrrdi 2323 . . . 4 ((𝜑 ∧ ¬ (Base‘ndx) = 𝐼) → (Base‘ndx) ∈ dom ((𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
4220adantr 276 . . . 4 ((𝜑 ∧ ¬ (Base‘ndx) = 𝐼) → dom (𝑆 sSet ⟨𝐼, 𝐸⟩) = dom ((𝑆 ↾ (V ∖ dom {⟨𝐼, 𝐸⟩})) ∪ {⟨𝐼, 𝐸⟩}))
4341, 42eleqtrrd 2309 . . 3 ((𝜑 ∧ ¬ (Base‘ndx) = 𝐼) → (Base‘ndx) ∈ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))
4424nnzi 9475 . . . . 5 (Base‘ndx) ∈ ℤ
452nnzd 9576 . . . . 5 (𝜑𝐼 ∈ ℤ)
46 zdceq 9530 . . . . 5 (((Base‘ndx) ∈ ℤ ∧ 𝐼 ∈ ℤ) → DECID (Base‘ndx) = 𝐼)
4744, 45, 46sylancr 414 . . . 4 (𝜑DECID (Base‘ndx) = 𝐼)
48 exmiddc 841 . . . 4 (DECID (Base‘ndx) = 𝐼 → ((Base‘ndx) = 𝐼 ∨ ¬ (Base‘ndx) = 𝐼))
4947, 48syl 14 . . 3 (𝜑 → ((Base‘ndx) = 𝐼 ∨ ¬ (Base‘ndx) = 𝐼))
5023, 43, 49mpjaodan 803 . 2 (𝜑 → (Base‘ndx) ∈ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))
5150, 21prssd 3827 1 (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet ⟨𝐼, 𝐸⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  Vcvv 2799  cdif 3194  cun 3195  cin 3196  wss 3197  {csn 3666  {cpr 3667  cop 3669   class class class wbr 4083  dom cdm 4719  cres 4721  cfv 5318  (class class class)co 6007  cn 9118  cz 9454   Struct cstr 13036  ndxcnx 13037   sSet csts 13038  Basecbs 13040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047
This theorem is referenced by:  setsvtx  15860  setsiedg  15861
  Copyright terms: Public domain W3C validator