Proof of Theorem bassetsnn
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . 4
⊢ ((𝜑 ∧ (Base‘ndx) = 𝐼) → (Base‘ndx) =
𝐼) |
| 2 | | bassetsnn.i |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 3 | | snidg 3695 |
. . . . . . . . . 10
⊢ (𝐼 ∈ ℕ → 𝐼 ∈ {𝐼}) |
| 4 | 2, 3 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ {𝐼}) |
| 5 | | basprssdmsets.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| 6 | | dmsnopg 5200 |
. . . . . . . . . 10
⊢ (𝐸 ∈ 𝑊 → dom {〈𝐼, 𝐸〉} = {𝐼}) |
| 7 | 5, 6 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → dom {〈𝐼, 𝐸〉} = {𝐼}) |
| 8 | 4, 7 | eleqtrrd 2309 |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ dom {〈𝐼, 𝐸〉}) |
| 9 | | elun2 3372 |
. . . . . . . 8
⊢ (𝐼 ∈ dom {〈𝐼, 𝐸〉} → 𝐼 ∈ (dom (𝑆 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ dom {〈𝐼, 𝐸〉})) |
| 10 | 8, 9 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ (dom (𝑆 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ dom {〈𝐼, 𝐸〉})) |
| 11 | | dmun 4930 |
. . . . . . 7
⊢ dom
((𝑆 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉}) = (dom (𝑆 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ dom {〈𝐼, 𝐸〉}) |
| 12 | 10, 11 | eleqtrrdi 2323 |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ dom ((𝑆 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
| 13 | | basprssdmsets.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 Struct 𝑋) |
| 14 | | structex 13052 |
. . . . . . . . 9
⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) |
| 15 | 13, 14 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ V) |
| 16 | | opexg 4314 |
. . . . . . . . 9
⊢ ((𝐼 ∈ ℕ ∧ 𝐸 ∈ 𝑊) → 〈𝐼, 𝐸〉 ∈ V) |
| 17 | 2, 5, 16 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → 〈𝐼, 𝐸〉 ∈ V) |
| 18 | | setsvalg 13070 |
. . . . . . . 8
⊢ ((𝑆 ∈ V ∧ 〈𝐼, 𝐸〉 ∈ V) → (𝑆 sSet 〈𝐼, 𝐸〉) = ((𝑆 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
| 19 | 15, 17, 18 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → (𝑆 sSet 〈𝐼, 𝐸〉) = ((𝑆 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
| 20 | 19 | dmeqd 4925 |
. . . . . 6
⊢ (𝜑 → dom (𝑆 sSet 〈𝐼, 𝐸〉) = dom ((𝑆 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
| 21 | 12, 20 | eleqtrrd 2309 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
| 22 | 21 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (Base‘ndx) = 𝐼) → 𝐼 ∈ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
| 23 | 1, 22 | eqeltrd 2306 |
. . 3
⊢ ((𝜑 ∧ (Base‘ndx) = 𝐼) → (Base‘ndx) ∈
dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
| 24 | | basendxnn 13096 |
. . . . . . . . . . 11
⊢
(Base‘ndx) ∈ ℕ |
| 25 | 24 | elexi 2812 |
. . . . . . . . . 10
⊢
(Base‘ndx) ∈ V |
| 26 | 25 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (Base‘ndx) =
𝐼) → (Base‘ndx)
∈ V) |
| 27 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (Base‘ndx) ∈ dom
{〈𝐼, 𝐸〉}) → (Base‘ndx) ∈ dom
{〈𝐼, 𝐸〉}) |
| 28 | 7 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (Base‘ndx) ∈ dom
{〈𝐼, 𝐸〉}) → dom {〈𝐼, 𝐸〉} = {𝐼}) |
| 29 | 27, 28 | eleqtrd 2308 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (Base‘ndx) ∈ dom
{〈𝐼, 𝐸〉}) → (Base‘ndx) ∈
{𝐼}) |
| 30 | | elsni 3684 |
. . . . . . . . . . 11
⊢
((Base‘ndx) ∈ {𝐼} → (Base‘ndx) = 𝐼) |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (Base‘ndx) ∈ dom
{〈𝐼, 𝐸〉}) → (Base‘ndx) = 𝐼) |
| 32 | 31 | stoic1a 1469 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (Base‘ndx) =
𝐼) → ¬
(Base‘ndx) ∈ dom {〈𝐼, 𝐸〉}) |
| 33 | 26, 32 | eldifd 3207 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (Base‘ndx) =
𝐼) → (Base‘ndx)
∈ (V ∖ dom {〈𝐼, 𝐸〉})) |
| 34 | | basprssdmsets.b |
. . . . . . . . 9
⊢ (𝜑 → (Base‘ndx) ∈
dom 𝑆) |
| 35 | 34 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (Base‘ndx) =
𝐼) → (Base‘ndx)
∈ dom 𝑆) |
| 36 | 33, 35 | elind 3389 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (Base‘ndx) =
𝐼) → (Base‘ndx)
∈ ((V ∖ dom {〈𝐼, 𝐸〉}) ∩ dom 𝑆)) |
| 37 | | dmres 5026 |
. . . . . . 7
⊢ dom
(𝑆 ↾ (V ∖ dom
{〈𝐼, 𝐸〉})) = ((V ∖ dom {〈𝐼, 𝐸〉}) ∩ dom 𝑆) |
| 38 | 36, 37 | eleqtrrdi 2323 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (Base‘ndx) =
𝐼) → (Base‘ndx)
∈ dom (𝑆 ↾ (V
∖ dom {〈𝐼, 𝐸〉}))) |
| 39 | | elun1 3371 |
. . . . . 6
⊢
((Base‘ndx) ∈ dom (𝑆 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) → (Base‘ndx) ∈
(dom (𝑆 ↾ (V ∖
dom {〈𝐼, 𝐸〉})) ∪ dom {〈𝐼, 𝐸〉})) |
| 40 | 38, 39 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (Base‘ndx) =
𝐼) → (Base‘ndx)
∈ (dom (𝑆 ↾ (V
∖ dom {〈𝐼, 𝐸〉})) ∪ dom {〈𝐼, 𝐸〉})) |
| 41 | 40, 11 | eleqtrrdi 2323 |
. . . 4
⊢ ((𝜑 ∧ ¬ (Base‘ndx) =
𝐼) → (Base‘ndx)
∈ dom ((𝑆 ↾ (V
∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
| 42 | 20 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ ¬ (Base‘ndx) =
𝐼) → dom (𝑆 sSet 〈𝐼, 𝐸〉) = dom ((𝑆 ↾ (V ∖ dom {〈𝐼, 𝐸〉})) ∪ {〈𝐼, 𝐸〉})) |
| 43 | 41, 42 | eleqtrrd 2309 |
. . 3
⊢ ((𝜑 ∧ ¬ (Base‘ndx) =
𝐼) → (Base‘ndx)
∈ dom (𝑆 sSet
〈𝐼, 𝐸〉)) |
| 44 | 24 | nnzi 9475 |
. . . . 5
⊢
(Base‘ndx) ∈ ℤ |
| 45 | 2 | nnzd 9576 |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 46 | | zdceq 9530 |
. . . . 5
⊢
(((Base‘ndx) ∈ ℤ ∧ 𝐼 ∈ ℤ) → DECID
(Base‘ndx) = 𝐼) |
| 47 | 44, 45, 46 | sylancr 414 |
. . . 4
⊢ (𝜑 → DECID
(Base‘ndx) = 𝐼) |
| 48 | | exmiddc 841 |
. . . 4
⊢
(DECID (Base‘ndx) = 𝐼 → ((Base‘ndx) = 𝐼 ∨ ¬ (Base‘ndx) =
𝐼)) |
| 49 | 47, 48 | syl 14 |
. . 3
⊢ (𝜑 → ((Base‘ndx) = 𝐼 ∨ ¬ (Base‘ndx) =
𝐼)) |
| 50 | 23, 43, 49 | mpjaodan 803 |
. 2
⊢ (𝜑 → (Base‘ndx) ∈
dom (𝑆 sSet 〈𝐼, 𝐸〉)) |
| 51 | 50, 21 | prssd 3827 |
1
⊢ (𝜑 → {(Base‘ndx), 𝐼} ⊆ dom (𝑆 sSet 〈𝐼, 𝐸〉)) |