ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexg GIF version

Theorem pwexg 4179
Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
pwexg (𝐴𝑉 → 𝒫 𝐴 ∈ V)

Proof of Theorem pwexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 3578 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21eleq1d 2246 . 2 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V))
3 vpwex 4178 . 2 𝒫 𝑥 ∈ V
42, 3vtoclg 2797 1 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2737  𝒫 cpw 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-in 3135  df-ss 3142  df-pw 3577
This theorem is referenced by:  pwexd  4180  abssexg  4181  pwex  4182  snexg  4183  pwel  4217  uniexb  4472  xpexg  4739  fabexg  5402  mapex  6651  pmvalg  6656  fopwdom  6833  ssenen  6848  restid2  12685  toponsspwpwg  13391  tgdom  13443  distop  13456  epttop  13461  cldval  13470  ntrfval  13471  clsfval  13472  neifval  13511  neif  13512  neival  13514
  Copyright terms: Public domain W3C validator