ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexg GIF version

Theorem pwexg 4263
Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
pwexg (𝐴𝑉 → 𝒫 𝐴 ∈ V)

Proof of Theorem pwexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 3652 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21eleq1d 2298 . 2 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V))
3 vpwex 4262 . 2 𝒫 𝑥 ∈ V
42, 3vtoclg 2861 1 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  𝒫 cpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  pwexd  4264  abssexg  4265  pwex  4266  snexg  4267  pwel  4303  uniexb  4561  xpexg  4830  fabexg  5509  mapex  6791  pmvalg  6796  fopwdom  6985  ssenen  7000  restid2  13267  toponsspwpwg  14681  tgdom  14731  distop  14744  epttop  14749  cldval  14758  ntrfval  14759  clsfval  14760  neifval  14799  neif  14800  neival  14802
  Copyright terms: Public domain W3C validator