ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwexg GIF version

Theorem pwexg 4182
Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
pwexg (𝐴𝑉 → 𝒫 𝐴 ∈ V)

Proof of Theorem pwexg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 3580 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
21eleq1d 2246 . 2 (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V))
3 vpwex 4181 . 2 𝒫 𝑥 ∈ V
42, 3vtoclg 2799 1 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2739  𝒫 cpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579
This theorem is referenced by:  pwexd  4183  abssexg  4184  pwex  4185  snexg  4186  pwel  4220  uniexb  4475  xpexg  4742  fabexg  5405  mapex  6656  pmvalg  6661  fopwdom  6838  ssenen  6853  restid2  12702  toponsspwpwg  13561  tgdom  13611  distop  13624  epttop  13629  cldval  13638  ntrfval  13639  clsfval  13640  neifval  13679  neif  13680  neival  13682
  Copyright terms: Public domain W3C validator