| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwexg | GIF version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 3621 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | eleq1d 2275 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
| 3 | vpwex 4228 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 2835 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 𝒫 cpw 3618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3174 df-ss 3181 df-pw 3620 |
| This theorem is referenced by: pwexd 4230 abssexg 4231 pwex 4232 snexg 4233 pwel 4267 uniexb 4525 xpexg 4794 fabexg 5472 mapex 6751 pmvalg 6756 fopwdom 6945 ssenen 6960 restid2 13130 toponsspwpwg 14544 tgdom 14594 distop 14607 epttop 14612 cldval 14621 ntrfval 14622 clsfval 14623 neifval 14662 neif 14663 neival 14665 |
| Copyright terms: Public domain | W3C validator |