ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnre GIF version

Theorem pnfnre 8114
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 cnex 8049 . . . . . 6 ℂ ∈ V
21uniex 4484 . . . . 5 ℂ ∈ V
3 pwuninel2 6368 . . . . 5 ( ℂ ∈ V → ¬ 𝒫 ℂ ∈ ℂ)
42, 3ax-mp 5 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
5 df-pnf 8109 . . . . 5 +∞ = 𝒫
65eleq1i 2271 . . . 4 (+∞ ∈ ℂ ↔ 𝒫 ℂ ∈ ℂ)
74, 6mtbir 673 . . 3 ¬ +∞ ∈ ℂ
8 recn 8058 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
97, 8mto 664 . 2 ¬ +∞ ∈ ℝ
109nelir 2474 1 +∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2176  wnel 2471  Vcvv 2772  𝒫 cpw 3616   cuni 3850  cc 7923  cr 7924  +∞cpnf 8104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-un 4480  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-nel 2472  df-rex 2490  df-rab 2493  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-uni 3851  df-pnf 8109
This theorem is referenced by:  renepnf  8120  nn0nepnf  9366  xrltnr  9901  pnfnlt  9909  xnn0lenn0nn0  9987  inftonninf  10587  pcgcd1  12651  pc2dvds  12653
  Copyright terms: Public domain W3C validator