ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnre GIF version

Theorem pnfnre 8085
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 cnex 8020 . . . . . 6 ℂ ∈ V
21uniex 4473 . . . . 5 ℂ ∈ V
3 pwuninel2 6349 . . . . 5 ( ℂ ∈ V → ¬ 𝒫 ℂ ∈ ℂ)
42, 3ax-mp 5 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
5 df-pnf 8080 . . . . 5 +∞ = 𝒫
65eleq1i 2262 . . . 4 (+∞ ∈ ℂ ↔ 𝒫 ℂ ∈ ℂ)
74, 6mtbir 672 . . 3 ¬ +∞ ∈ ℂ
8 recn 8029 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
97, 8mto 663 . 2 ¬ +∞ ∈ ℝ
109nelir 2465 1 +∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2167  wnel 2462  Vcvv 2763  𝒫 cpw 3606   cuni 3840  cc 7894  cr 7895  +∞cpnf 8075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-un 4469  ax-cnex 7987  ax-resscn 7988
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-nel 2463  df-rex 2481  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-pw 3608  df-uni 3841  df-pnf 8080
This theorem is referenced by:  renepnf  8091  nn0nepnf  9337  xrltnr  9871  pnfnlt  9879  xnn0lenn0nn0  9957  inftonninf  10551  pcgcd1  12522  pc2dvds  12524
  Copyright terms: Public domain W3C validator