ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnre GIF version

Theorem pnfnre 7940
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 cnex 7877 . . . . . 6 ℂ ∈ V
21uniex 4415 . . . . 5 ℂ ∈ V
3 pwuninel2 6250 . . . . 5 ( ℂ ∈ V → ¬ 𝒫 ℂ ∈ ℂ)
42, 3ax-mp 5 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
5 df-pnf 7935 . . . . 5 +∞ = 𝒫
65eleq1i 2232 . . . 4 (+∞ ∈ ℂ ↔ 𝒫 ℂ ∈ ℂ)
74, 6mtbir 661 . . 3 ¬ +∞ ∈ ℂ
8 recn 7886 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
97, 8mto 652 . 2 ¬ +∞ ∈ ℝ
109nelir 2434 1 +∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2136  wnel 2431  Vcvv 2726  𝒫 cpw 3559   cuni 3789  cc 7751  cr 7752  +∞cpnf 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-un 4411  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-nel 2432  df-rex 2450  df-rab 2453  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-uni 3790  df-pnf 7935
This theorem is referenced by:  renepnf  7946  nn0nepnf  9185  xrltnr  9715  pnfnlt  9723  xnn0lenn0nn0  9801  inftonninf  10376  pcgcd1  12259  pc2dvds  12261
  Copyright terms: Public domain W3C validator