ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnre GIF version

Theorem pnfnre 8001
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 cnex 7937 . . . . . 6 ℂ ∈ V
21uniex 4439 . . . . 5 ℂ ∈ V
3 pwuninel2 6285 . . . . 5 ( ℂ ∈ V → ¬ 𝒫 ℂ ∈ ℂ)
42, 3ax-mp 5 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
5 df-pnf 7996 . . . . 5 +∞ = 𝒫
65eleq1i 2243 . . . 4 (+∞ ∈ ℂ ↔ 𝒫 ℂ ∈ ℂ)
74, 6mtbir 671 . . 3 ¬ +∞ ∈ ℂ
8 recn 7946 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
97, 8mto 662 . 2 ¬ +∞ ∈ ℝ
109nelir 2445 1 +∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2148  wnel 2442  Vcvv 2739  𝒫 cpw 3577   cuni 3811  cc 7811  cr 7812  +∞cpnf 7991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-un 4435  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-nel 2443  df-rex 2461  df-rab 2464  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579  df-uni 3812  df-pnf 7996
This theorem is referenced by:  renepnf  8007  nn0nepnf  9249  xrltnr  9781  pnfnlt  9789  xnn0lenn0nn0  9867  inftonninf  10443  pcgcd1  12329  pc2dvds  12331
  Copyright terms: Public domain W3C validator