| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfnre | GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnre | ⊢ +∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8049 | . . . . . 6 ⊢ ℂ ∈ V | |
| 2 | 1 | uniex 4484 | . . . . 5 ⊢ ∪ ℂ ∈ V |
| 3 | pwuninel2 6368 | . . . . 5 ⊢ (∪ ℂ ∈ V → ¬ 𝒫 ∪ ℂ ∈ ℂ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ |
| 5 | df-pnf 8109 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 6 | 5 | eleq1i 2271 | . . . 4 ⊢ (+∞ ∈ ℂ ↔ 𝒫 ∪ ℂ ∈ ℂ) |
| 7 | 4, 6 | mtbir 673 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
| 8 | recn 8058 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
| 9 | 7, 8 | mto 664 | . 2 ⊢ ¬ +∞ ∈ ℝ |
| 10 | 9 | nelir 2474 | 1 ⊢ +∞ ∉ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2176 ∉ wnel 2471 Vcvv 2772 𝒫 cpw 3616 ∪ cuni 3850 ℂcc 7923 ℝcr 7924 +∞cpnf 8104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-un 4480 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-nel 2472 df-rex 2490 df-rab 2493 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-uni 3851 df-pnf 8109 |
| This theorem is referenced by: renepnf 8120 nn0nepnf 9366 xrltnr 9901 pnfnlt 9909 xnn0lenn0nn0 9987 inftonninf 10587 pcgcd1 12651 pc2dvds 12653 |
| Copyright terms: Public domain | W3C validator |