| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfnre | GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnre | ⊢ +∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8003 | . . . . . 6 ⊢ ℂ ∈ V | |
| 2 | 1 | uniex 4472 | . . . . 5 ⊢ ∪ ℂ ∈ V |
| 3 | pwuninel2 6340 | . . . . 5 ⊢ (∪ ℂ ∈ V → ¬ 𝒫 ∪ ℂ ∈ ℂ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ |
| 5 | df-pnf 8063 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 6 | 5 | eleq1i 2262 | . . . 4 ⊢ (+∞ ∈ ℂ ↔ 𝒫 ∪ ℂ ∈ ℂ) |
| 7 | 4, 6 | mtbir 672 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
| 8 | recn 8012 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
| 9 | 7, 8 | mto 663 | . 2 ⊢ ¬ +∞ ∈ ℝ |
| 10 | 9 | nelir 2465 | 1 ⊢ +∞ ∉ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2167 ∉ wnel 2462 Vcvv 2763 𝒫 cpw 3605 ∪ cuni 3839 ℂcc 7877 ℝcr 7878 +∞cpnf 8058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-un 4468 ax-cnex 7970 ax-resscn 7971 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-nel 2463 df-rex 2481 df-rab 2484 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-uni 3840 df-pnf 8063 |
| This theorem is referenced by: renepnf 8074 nn0nepnf 9320 xrltnr 9854 pnfnlt 9862 xnn0lenn0nn0 9940 inftonninf 10534 pcgcd1 12497 pc2dvds 12499 |
| Copyright terms: Public domain | W3C validator |