| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pnfnre | GIF version | ||
| Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| pnfnre | ⊢ +∞ ∉ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 8123 | . . . . . 6 ⊢ ℂ ∈ V | |
| 2 | 1 | uniex 4528 | . . . . 5 ⊢ ∪ ℂ ∈ V |
| 3 | pwuninel2 6428 | . . . . 5 ⊢ (∪ ℂ ∈ V → ¬ 𝒫 ∪ ℂ ∈ ℂ) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ¬ 𝒫 ∪ ℂ ∈ ℂ |
| 5 | df-pnf 8183 | . . . . 5 ⊢ +∞ = 𝒫 ∪ ℂ | |
| 6 | 5 | eleq1i 2295 | . . . 4 ⊢ (+∞ ∈ ℂ ↔ 𝒫 ∪ ℂ ∈ ℂ) |
| 7 | 4, 6 | mtbir 675 | . . 3 ⊢ ¬ +∞ ∈ ℂ |
| 8 | recn 8132 | . . 3 ⊢ (+∞ ∈ ℝ → +∞ ∈ ℂ) | |
| 9 | 7, 8 | mto 666 | . 2 ⊢ ¬ +∞ ∈ ℝ |
| 10 | 9 | nelir 2498 | 1 ⊢ +∞ ∉ ℝ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2200 ∉ wnel 2495 Vcvv 2799 𝒫 cpw 3649 ∪ cuni 3888 ℂcc 7997 ℝcr 7998 +∞cpnf 8178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-un 4524 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-nel 2496 df-rex 2514 df-rab 2517 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-uni 3889 df-pnf 8183 |
| This theorem is referenced by: renepnf 8194 nn0nepnf 9440 xrltnr 9975 pnfnlt 9983 xnn0lenn0nn0 10061 inftonninf 10664 pcgcd1 12851 pc2dvds 12853 |
| Copyright terms: Public domain | W3C validator |