ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pnfnre GIF version

Theorem pnfnre 7961
Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
pnfnre +∞ ∉ ℝ

Proof of Theorem pnfnre
StepHypRef Expression
1 cnex 7898 . . . . . 6 ℂ ∈ V
21uniex 4422 . . . . 5 ℂ ∈ V
3 pwuninel2 6261 . . . . 5 ( ℂ ∈ V → ¬ 𝒫 ℂ ∈ ℂ)
42, 3ax-mp 5 . . . 4 ¬ 𝒫 ℂ ∈ ℂ
5 df-pnf 7956 . . . . 5 +∞ = 𝒫
65eleq1i 2236 . . . 4 (+∞ ∈ ℂ ↔ 𝒫 ℂ ∈ ℂ)
74, 6mtbir 666 . . 3 ¬ +∞ ∈ ℂ
8 recn 7907 . . 3 (+∞ ∈ ℝ → +∞ ∈ ℂ)
97, 8mto 657 . 2 ¬ +∞ ∈ ℝ
109nelir 2438 1 +∞ ∉ ℝ
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wcel 2141  wnel 2435  Vcvv 2730  𝒫 cpw 3566   cuni 3796  cc 7772  cr 7773  +∞cpnf 7951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-un 4418  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-nel 2436  df-rex 2454  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797  df-pnf 7956
This theorem is referenced by:  renepnf  7967  nn0nepnf  9206  xrltnr  9736  pnfnlt  9744  xnn0lenn0nn0  9822  inftonninf  10397  pcgcd1  12281  pc2dvds  12283
  Copyright terms: Public domain W3C validator