| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expimpd | GIF version | ||
| Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| expimpd.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| expimpd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expimpd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 254 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: euotd 4303 swopo 4357 reusv3 4511 ralxfrd 4513 rexxfrd 4514 nlimsucg 4618 poirr2 5080 elpreima 5706 fmptco 5753 tposfo2 6360 nnm00 6623 th3qlem1 6731 fiintim 7035 supmoti 7102 infglbti 7134 infnlbti 7135 updjud 7191 recexprlemss1l 7755 recexprlemss1u 7756 cauappcvgprlemladdru 7776 cauappcvgprlemladdrl 7777 caucvgprlemladdrl 7798 uzind 9491 ledivge1le 9855 xltnegi 9964 ixxssixx 10031 seqf1oglem1 10671 expnegzap 10725 shftlem 11171 cau3lem 11469 caubnd2 11472 climuni 11648 2clim 11656 summodclem2 11737 summodc 11738 zsumdc 11739 fsumf1o 11745 fisumss 11747 fsumcl2lem 11753 fsumadd 11761 fsummulc2 11803 prodmodclem2 11932 prodmodc 11933 zproddc 11934 fprodf1o 11943 fprodssdc 11945 fprodmul 11946 dfgcd2 12379 cncongrprm 12523 prmpwdvds 12722 infpnlem1 12726 1arith 12734 isgrpid2 13416 dvdsrd 13900 dvdsrtr 13907 dvdsrmul1 13908 unitgrp 13922 domnmuln0 14079 eltg3 14573 tgidm 14590 tgrest 14685 tgcn 14724 lmtopcnp 14766 txbasval 14783 txcnp 14787 bldisj 14917 xblm 14933 blssps 14943 blss 14944 blssexps 14945 blssex 14946 metcnp3 15027 mpomulcn 15082 2lgslem3 15622 2sqlem6 15641 2sqlem7 15642 bj-findis 15989 |
| Copyright terms: Public domain | W3C validator |