| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expimpd | GIF version | ||
| Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| expimpd.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| expimpd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expimpd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 254 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: euotd 4320 swopo 4374 reusv3 4528 ralxfrd 4530 rexxfrd 4531 nlimsucg 4635 poirr2 5097 elpreima 5727 fmptco 5774 tposfo2 6383 nnm00 6646 th3qlem1 6754 fiintim 7061 supmoti 7128 infglbti 7160 infnlbti 7161 updjud 7217 recexprlemss1l 7790 recexprlemss1u 7791 cauappcvgprlemladdru 7811 cauappcvgprlemladdrl 7812 caucvgprlemladdrl 7833 uzind 9526 ledivge1le 9890 xltnegi 9999 ixxssixx 10066 seqf1oglem1 10708 expnegzap 10762 shftlem 11293 cau3lem 11591 caubnd2 11594 climuni 11770 2clim 11778 summodclem2 11859 summodc 11860 zsumdc 11861 fsumf1o 11867 fisumss 11869 fsumcl2lem 11875 fsumadd 11883 fsummulc2 11925 prodmodclem2 12054 prodmodc 12055 zproddc 12056 fprodf1o 12065 fprodssdc 12067 fprodmul 12068 dfgcd2 12501 cncongrprm 12645 prmpwdvds 12844 infpnlem1 12848 1arith 12856 isgrpid2 13539 dvdsrd 14023 dvdsrtr 14030 dvdsrmul1 14031 unitgrp 14045 domnmuln0 14202 eltg3 14696 tgidm 14713 tgrest 14808 tgcn 14847 lmtopcnp 14889 txbasval 14906 txcnp 14910 bldisj 15040 xblm 15056 blssps 15066 blss 15067 blssexps 15068 blssex 15069 metcnp3 15150 mpomulcn 15205 2lgslem3 15745 2sqlem6 15764 2sqlem7 15765 bj-findis 16252 |
| Copyright terms: Public domain | W3C validator |