| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expimpd | GIF version | ||
| Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| expimpd.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| expimpd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expimpd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 254 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: euotd 4288 swopo 4342 reusv3 4496 ralxfrd 4498 rexxfrd 4499 nlimsucg 4603 poirr2 5063 elpreima 5684 fmptco 5731 tposfo2 6334 nnm00 6597 th3qlem1 6705 fiintim 7001 supmoti 7068 infglbti 7100 infnlbti 7101 updjud 7157 recexprlemss1l 7721 recexprlemss1u 7722 cauappcvgprlemladdru 7742 cauappcvgprlemladdrl 7743 caucvgprlemladdrl 7764 uzind 9456 ledivge1le 9820 xltnegi 9929 ixxssixx 9996 seqf1oglem1 10630 expnegzap 10684 shftlem 11000 cau3lem 11298 caubnd2 11301 climuni 11477 2clim 11485 summodclem2 11566 summodc 11567 zsumdc 11568 fsumf1o 11574 fisumss 11576 fsumcl2lem 11582 fsumadd 11590 fsummulc2 11632 prodmodclem2 11761 prodmodc 11762 zproddc 11763 fprodf1o 11772 fprodssdc 11774 fprodmul 11775 dfgcd2 12208 cncongrprm 12352 prmpwdvds 12551 infpnlem1 12555 1arith 12563 isgrpid2 13244 dvdsrd 13728 dvdsrtr 13735 dvdsrmul1 13736 unitgrp 13750 domnmuln0 13907 eltg3 14379 tgidm 14396 tgrest 14491 tgcn 14530 lmtopcnp 14572 txbasval 14589 txcnp 14593 bldisj 14723 xblm 14739 blssps 14749 blss 14750 blssexps 14751 blssex 14752 metcnp3 14833 mpomulcn 14888 2lgslem3 15428 2sqlem6 15447 2sqlem7 15448 bj-findis 15711 |
| Copyright terms: Public domain | W3C validator |