Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expimpd | GIF version |
Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
expimpd.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
expimpd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expimpd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 252 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: euotd 4239 swopo 4291 reusv3 4445 ralxfrd 4447 rexxfrd 4448 nlimsucg 4550 poirr2 5003 elpreima 5615 fmptco 5662 tposfo2 6246 nnm00 6509 th3qlem1 6615 fiintim 6906 supmoti 6970 infglbti 7002 infnlbti 7003 updjud 7059 recexprlemss1l 7597 recexprlemss1u 7598 cauappcvgprlemladdru 7618 cauappcvgprlemladdrl 7619 caucvgprlemladdrl 7640 uzind 9323 ledivge1le 9683 xltnegi 9792 ixxssixx 9859 expnegzap 10510 shftlem 10780 cau3lem 11078 caubnd2 11081 climuni 11256 2clim 11264 summodclem2 11345 summodc 11346 zsumdc 11347 fsumf1o 11353 fisumss 11355 fsumcl2lem 11361 fsumadd 11369 fsummulc2 11411 prodmodclem2 11540 prodmodc 11541 zproddc 11542 fprodf1o 11551 fprodssdc 11553 fprodmul 11554 dfgcd2 11969 cncongrprm 12111 prmpwdvds 12307 infpnlem1 12311 1arith 12319 isgrpid2 12743 eltg3 12851 tgidm 12868 tgrest 12963 tgcn 13002 lmtopcnp 13044 txbasval 13061 txcnp 13065 bldisj 13195 xblm 13211 blssps 13221 blss 13222 blssexps 13223 blssex 13224 metcnp3 13305 2sqlem6 13750 2sqlem7 13751 bj-findis 14014 |
Copyright terms: Public domain | W3C validator |