![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > expimpd | GIF version |
Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
expimpd.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
expimpd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expimpd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 254 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: euotd 4248 swopo 4300 reusv3 4454 ralxfrd 4456 rexxfrd 4457 nlimsucg 4559 poirr2 5013 elpreima 5627 fmptco 5674 tposfo2 6258 nnm00 6521 th3qlem1 6627 fiintim 6918 supmoti 6982 infglbti 7014 infnlbti 7015 updjud 7071 recexprlemss1l 7609 recexprlemss1u 7610 cauappcvgprlemladdru 7630 cauappcvgprlemladdrl 7631 caucvgprlemladdrl 7652 uzind 9337 ledivge1le 9697 xltnegi 9806 ixxssixx 9873 expnegzap 10524 shftlem 10793 cau3lem 11091 caubnd2 11094 climuni 11269 2clim 11277 summodclem2 11358 summodc 11359 zsumdc 11360 fsumf1o 11366 fisumss 11368 fsumcl2lem 11374 fsumadd 11382 fsummulc2 11424 prodmodclem2 11553 prodmodc 11554 zproddc 11555 fprodf1o 11564 fprodssdc 11566 fprodmul 11567 dfgcd2 11982 cncongrprm 12124 prmpwdvds 12320 infpnlem1 12324 1arith 12332 isgrpid2 12784 eltg3 13137 tgidm 13154 tgrest 13249 tgcn 13288 lmtopcnp 13330 txbasval 13347 txcnp 13351 bldisj 13481 xblm 13497 blssps 13507 blss 13508 blssexps 13509 blssex 13510 metcnp3 13591 2sqlem6 14036 2sqlem7 14037 bj-findis 14300 |
Copyright terms: Public domain | W3C validator |