Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > expimpd | GIF version |
Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
Ref | Expression |
---|---|
expimpd.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
expimpd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expimpd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 252 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: euotd 4232 swopo 4284 reusv3 4438 ralxfrd 4440 rexxfrd 4441 nlimsucg 4543 poirr2 4996 elpreima 5604 fmptco 5651 tposfo2 6235 nnm00 6497 th3qlem1 6603 fiintim 6894 supmoti 6958 infglbti 6990 infnlbti 6991 updjud 7047 recexprlemss1l 7576 recexprlemss1u 7577 cauappcvgprlemladdru 7597 cauappcvgprlemladdrl 7598 caucvgprlemladdrl 7619 uzind 9302 ledivge1le 9662 xltnegi 9771 ixxssixx 9838 expnegzap 10489 shftlem 10758 cau3lem 11056 caubnd2 11059 climuni 11234 2clim 11242 summodclem2 11323 summodc 11324 zsumdc 11325 fsumf1o 11331 fisumss 11333 fsumcl2lem 11339 fsumadd 11347 fsummulc2 11389 prodmodclem2 11518 prodmodc 11519 zproddc 11520 fprodf1o 11529 fprodssdc 11531 fprodmul 11532 dfgcd2 11947 cncongrprm 12089 prmpwdvds 12285 infpnlem1 12289 1arith 12297 eltg3 12697 tgidm 12714 tgrest 12809 tgcn 12848 lmtopcnp 12890 txbasval 12907 txcnp 12911 bldisj 13041 xblm 13057 blssps 13067 blss 13068 blssexps 13069 blssex 13070 metcnp3 13151 2sqlem6 13596 2sqlem7 13597 bj-findis 13861 |
Copyright terms: Public domain | W3C validator |