| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > expimpd | GIF version | ||
| Description: Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.) |
| Ref | Expression |
|---|---|
| expimpd.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| expimpd | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expimpd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 254 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: euotd 4341 swopo 4397 reusv3 4551 ralxfrd 4553 rexxfrd 4554 nlimsucg 4658 poirr2 5121 elpreima 5756 fmptco 5803 tposfo2 6419 nnm00 6684 th3qlem1 6792 fiintim 7101 supmoti 7168 infglbti 7200 infnlbti 7201 updjud 7257 recexprlemss1l 7830 recexprlemss1u 7831 cauappcvgprlemladdru 7851 cauappcvgprlemladdrl 7852 caucvgprlemladdrl 7873 uzind 9566 ledivge1le 9930 xltnegi 10039 ixxssixx 10106 seqf1oglem1 10749 expnegzap 10803 shftlem 11335 cau3lem 11633 caubnd2 11636 climuni 11812 2clim 11820 summodclem2 11901 summodc 11902 zsumdc 11903 fsumf1o 11909 fisumss 11911 fsumcl2lem 11917 fsumadd 11925 fsummulc2 11967 prodmodclem2 12096 prodmodc 12097 zproddc 12098 fprodf1o 12107 fprodssdc 12109 fprodmul 12110 dfgcd2 12543 cncongrprm 12687 prmpwdvds 12886 infpnlem1 12890 1arith 12898 isgrpid2 13581 dvdsrd 14066 dvdsrtr 14073 dvdsrmul1 14074 unitgrp 14088 domnmuln0 14245 eltg3 14739 tgidm 14756 tgrest 14851 tgcn 14890 lmtopcnp 14932 txbasval 14949 txcnp 14953 bldisj 15083 xblm 15099 blssps 15109 blss 15110 blssexps 15111 blssex 15112 metcnp3 15193 mpomulcn 15248 2lgslem3 15788 2sqlem6 15807 2sqlem7 15808 uspgr2wlkeq 16086 wlklenvclwlk 16094 bj-findis 16366 |
| Copyright terms: Public domain | W3C validator |