Step | Hyp | Ref
| Expression |
1 | | tfrlemi14d.1 |
. . . 4
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
2 | 1 | tfrlem8 6297 |
. . 3
⊢ Ord dom
recs(𝐹) |
3 | | ordsson 4476 |
. . 3
⊢ (Ord dom
recs(𝐹) → dom
recs(𝐹) ⊆
On) |
4 | 2, 3 | mp1i 10 |
. 2
⊢ (𝜑 → dom recs(𝐹) ⊆ On) |
5 | | tfrlemi14d.2 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
6 | 1, 5 | tfrlemi1 6311 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ On) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) |
7 | 5 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
8 | | simplr 525 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) → 𝑧 ∈ On) |
9 | | simprl 526 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) → 𝑔 Fn 𝑧) |
10 | | fneq2 5287 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (𝑔 Fn 𝑤 ↔ 𝑔 Fn 𝑧)) |
11 | | raleq 2665 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑧 → (∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)) ↔ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) |
12 | 10, 11 | anbi12d 470 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑧 → ((𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢))))) |
13 | 12 | rspcev 2834 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ On ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) |
14 | 13 | adantll 473 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) |
15 | | vex 2733 |
. . . . . . . . . . 11
⊢ 𝑔 ∈ V |
16 | 1, 15 | tfrlem3a 6289 |
. . . . . . . . . 10
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢 ∈ 𝑤 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) |
17 | 14, 16 | sylibr 133 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) → 𝑔 ∈ 𝐴) |
18 | 1, 7, 8, 9, 17 | tfrlemisucaccv 6304 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) → (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴) |
19 | | vex 2733 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
20 | 5 | tfrlem3-2d 6291 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (Fun 𝐹 ∧ (𝐹‘𝑔) ∈ V)) |
21 | 20 | simprd 113 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹‘𝑔) ∈ V) |
22 | | opexg 4213 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ V ∧ (𝐹‘𝑔) ∈ V) → 〈𝑧, (𝐹‘𝑔)〉 ∈ V) |
23 | 19, 21, 22 | sylancr 412 |
. . . . . . . . . . 11
⊢ (𝜑 → 〈𝑧, (𝐹‘𝑔)〉 ∈ V) |
24 | | snidg 3612 |
. . . . . . . . . . 11
⊢
(〈𝑧, (𝐹‘𝑔)〉 ∈ V → 〈𝑧, (𝐹‘𝑔)〉 ∈ {〈𝑧, (𝐹‘𝑔)〉}) |
25 | | elun2 3295 |
. . . . . . . . . . 11
⊢
(〈𝑧, (𝐹‘𝑔)〉 ∈ {〈𝑧, (𝐹‘𝑔)〉} → 〈𝑧, (𝐹‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) |
26 | 23, 24, 25 | 3syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 〈𝑧, (𝐹‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) |
27 | 26 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) → 〈𝑧, (𝐹‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) |
28 | | opeldmg 4816 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ V ∧ (𝐹‘𝑔) ∈ V) → (〈𝑧, (𝐹‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) |
29 | 19, 21, 28 | sylancr 412 |
. . . . . . . . . 10
⊢ (𝜑 → (〈𝑧, (𝐹‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) |
30 | 29 | ad2antrr 485 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) → (〈𝑧, (𝐹‘𝑔)〉 ∈ (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) |
31 | 27, 30 | mpd 13 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) |
32 | | dmeq 4811 |
. . . . . . . . . 10
⊢ (ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) → dom ℎ = dom (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) |
33 | 32 | eleq2d 2240 |
. . . . . . . . 9
⊢ (ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) → (𝑧 ∈ dom ℎ ↔ 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))) |
34 | 33 | rspcev 2834 |
. . . . . . . 8
⊢ (((𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}) ∈ 𝐴 ∧ 𝑧 ∈ dom (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉})) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
35 | 18, 31, 34 | syl2anc 409 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢 ∈ 𝑧 (𝑔‘𝑢) = (𝐹‘(𝑔 ↾ 𝑢)))) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
36 | 6, 35 | exlimddv 1891 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ On) → ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
37 | | eliun 3877 |
. . . . . 6
⊢ (𝑧 ∈ ∪ ℎ
∈ 𝐴 dom ℎ ↔ ∃ℎ ∈ 𝐴 𝑧 ∈ dom ℎ) |
38 | 36, 37 | sylibr 133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ On) → 𝑧 ∈ ∪
ℎ ∈ 𝐴 dom ℎ) |
39 | 38 | ex 114 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ On → 𝑧 ∈ ∪
ℎ ∈ 𝐴 dom ℎ)) |
40 | 39 | ssrdv 3153 |
. . 3
⊢ (𝜑 → On ⊆ ∪ ℎ
∈ 𝐴 dom ℎ) |
41 | 1 | recsfval 6294 |
. . . . 5
⊢
recs(𝐹) = ∪ 𝐴 |
42 | 41 | dmeqi 4812 |
. . . 4
⊢ dom
recs(𝐹) = dom ∪ 𝐴 |
43 | | dmuni 4821 |
. . . 4
⊢ dom ∪ 𝐴 =
∪ ℎ ∈ 𝐴 dom ℎ |
44 | 42, 43 | eqtri 2191 |
. . 3
⊢ dom
recs(𝐹) = ∪ ℎ
∈ 𝐴 dom ℎ |
45 | 40, 44 | sseqtrrdi 3196 |
. 2
⊢ (𝜑 → On ⊆ dom recs(𝐹)) |
46 | 4, 45 | eqssd 3164 |
1
⊢ (𝜑 → dom recs(𝐹) = On) |