ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi14d GIF version

Theorem tfrlemi14d 6184
Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.)
Hypotheses
Ref Expression
tfrlemi14d.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemi14d.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlemi14d (𝜑 → dom recs(𝐹) = On)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝜑,𝑓,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfrlemi14d
Dummy variables 𝑔 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemi14d.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 6169 . . 3 Ord dom recs(𝐹)
3 ordsson 4368 . . 3 (Ord dom recs(𝐹) → dom recs(𝐹) ⊆ On)
42, 3mp1i 10 . 2 (𝜑 → dom recs(𝐹) ⊆ On)
5 tfrlemi14d.2 . . . . . . . 8 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
61, 5tfrlemi1 6183 . . . . . . 7 ((𝜑𝑧 ∈ On) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
75ad2antrr 477 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
8 simplr 502 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑧 ∈ On)
9 simprl 503 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑔 Fn 𝑧)
10 fneq2 5170 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑔 Fn 𝑤𝑔 Fn 𝑧))
11 raleq 2600 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1210, 11anbi12d 462 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ((𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1312rspcev 2760 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1413adantll 465 . . . . . . . . . 10 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
15 vex 2660 . . . . . . . . . . 11 𝑔 ∈ V
161, 15tfrlem3a 6161 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1714, 16sylibr 133 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑔𝐴)
181, 7, 8, 9, 17tfrlemisucaccv 6176 . . . . . . . 8 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
19 vex 2660 . . . . . . . . . . . 12 𝑧 ∈ V
205tfrlem3-2d 6163 . . . . . . . . . . . . 13 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
2120simprd 113 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑔) ∈ V)
22 opexg 4110 . . . . . . . . . . . 12 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
2319, 21, 22sylancr 408 . . . . . . . . . . 11 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
24 snidg 3520 . . . . . . . . . . 11 (⟨𝑧, (𝐹𝑔)⟩ ∈ V → ⟨𝑧, (𝐹𝑔)⟩ ∈ {⟨𝑧, (𝐹𝑔)⟩})
25 elun2 3210 . . . . . . . . . . 11 (⟨𝑧, (𝐹𝑔)⟩ ∈ {⟨𝑧, (𝐹𝑔)⟩} → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
2623, 24, 253syl 17 . . . . . . . . . 10 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
2726ad2antrr 477 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
28 opeldmg 4704 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
2919, 21, 28sylancr 408 . . . . . . . . . 10 (𝜑 → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3029ad2antrr 477 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3127, 30mpd 13 . . . . . . . 8 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
32 dmeq 4699 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
3332eleq2d 2184 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3433rspcev 2760 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
3518, 31, 34syl2anc 406 . . . . . . 7 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
366, 35exlimddv 1852 . . . . . 6 ((𝜑𝑧 ∈ On) → ∃𝐴 𝑧 ∈ dom )
37 eliun 3783 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
3836, 37sylibr 133 . . . . 5 ((𝜑𝑧 ∈ On) → 𝑧 𝐴 dom )
3938ex 114 . . . 4 (𝜑 → (𝑧 ∈ On → 𝑧 𝐴 dom ))
4039ssrdv 3069 . . 3 (𝜑 → On ⊆ 𝐴 dom )
411recsfval 6166 . . . . 5 recs(𝐹) = 𝐴
4241dmeqi 4700 . . . 4 dom recs(𝐹) = dom 𝐴
43 dmuni 4709 . . . 4 dom 𝐴 = 𝐴 dom
4442, 43eqtri 2135 . . 3 dom recs(𝐹) = 𝐴 dom
4540, 44syl6sseqr 3112 . 2 (𝜑 → On ⊆ dom recs(𝐹))
464, 45eqssd 3080 1 (𝜑 → dom recs(𝐹) = On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1312   = wceq 1314  wcel 1463  {cab 2101  wral 2390  wrex 2391  Vcvv 2657  cun 3035  wss 3037  {csn 3493  cop 3496   cuni 3702   ciun 3779  Ord word 4244  Oncon0 4245  dom cdm 4499  cres 4501  Fun wfun 5075   Fn wfn 5076  cfv 5081  recscrecs 6155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-recs 6156
This theorem is referenced by:  tfri1d  6186
  Copyright terms: Public domain W3C validator