ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi14d GIF version

Theorem tfrlemi14d 6237
Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.)
Hypotheses
Ref Expression
tfrlemi14d.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemi14d.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlemi14d (𝜑 → dom recs(𝐹) = On)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝜑,𝑓,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfrlemi14d
Dummy variables 𝑔 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemi14d.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 6222 . . 3 Ord dom recs(𝐹)
3 ordsson 4415 . . 3 (Ord dom recs(𝐹) → dom recs(𝐹) ⊆ On)
42, 3mp1i 10 . 2 (𝜑 → dom recs(𝐹) ⊆ On)
5 tfrlemi14d.2 . . . . . . . 8 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
61, 5tfrlemi1 6236 . . . . . . 7 ((𝜑𝑧 ∈ On) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
75ad2antrr 480 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
8 simplr 520 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑧 ∈ On)
9 simprl 521 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑔 Fn 𝑧)
10 fneq2 5219 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑔 Fn 𝑤𝑔 Fn 𝑧))
11 raleq 2629 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1210, 11anbi12d 465 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ((𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1312rspcev 2792 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1413adantll 468 . . . . . . . . . 10 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
15 vex 2692 . . . . . . . . . . 11 𝑔 ∈ V
161, 15tfrlem3a 6214 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1714, 16sylibr 133 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑔𝐴)
181, 7, 8, 9, 17tfrlemisucaccv 6229 . . . . . . . 8 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
19 vex 2692 . . . . . . . . . . . 12 𝑧 ∈ V
205tfrlem3-2d 6216 . . . . . . . . . . . . 13 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
2120simprd 113 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑔) ∈ V)
22 opexg 4157 . . . . . . . . . . . 12 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
2319, 21, 22sylancr 411 . . . . . . . . . . 11 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
24 snidg 3560 . . . . . . . . . . 11 (⟨𝑧, (𝐹𝑔)⟩ ∈ V → ⟨𝑧, (𝐹𝑔)⟩ ∈ {⟨𝑧, (𝐹𝑔)⟩})
25 elun2 3248 . . . . . . . . . . 11 (⟨𝑧, (𝐹𝑔)⟩ ∈ {⟨𝑧, (𝐹𝑔)⟩} → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
2623, 24, 253syl 17 . . . . . . . . . 10 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
2726ad2antrr 480 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
28 opeldmg 4751 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
2919, 21, 28sylancr 411 . . . . . . . . . 10 (𝜑 → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3029ad2antrr 480 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3127, 30mpd 13 . . . . . . . 8 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
32 dmeq 4746 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
3332eleq2d 2210 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3433rspcev 2792 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
3518, 31, 34syl2anc 409 . . . . . . 7 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
366, 35exlimddv 1871 . . . . . 6 ((𝜑𝑧 ∈ On) → ∃𝐴 𝑧 ∈ dom )
37 eliun 3824 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
3836, 37sylibr 133 . . . . 5 ((𝜑𝑧 ∈ On) → 𝑧 𝐴 dom )
3938ex 114 . . . 4 (𝜑 → (𝑧 ∈ On → 𝑧 𝐴 dom ))
4039ssrdv 3107 . . 3 (𝜑 → On ⊆ 𝐴 dom )
411recsfval 6219 . . . . 5 recs(𝐹) = 𝐴
4241dmeqi 4747 . . . 4 dom recs(𝐹) = dom 𝐴
43 dmuni 4756 . . . 4 dom 𝐴 = 𝐴 dom
4442, 43eqtri 2161 . . 3 dom recs(𝐹) = 𝐴 dom
4540, 44sseqtrrdi 3150 . 2 (𝜑 → On ⊆ dom recs(𝐹))
464, 45eqssd 3118 1 (𝜑 → dom recs(𝐹) = On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1330   = wceq 1332  wcel 1481  {cab 2126  wral 2417  wrex 2418  Vcvv 2689  cun 3073  wss 3075  {csn 3531  cop 3534   cuni 3743   ciun 3820  Ord word 4291  Oncon0 4292  dom cdm 4546  cres 4548  Fun wfun 5124   Fn wfn 5125  cfv 5130  recscrecs 6208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-iord 4295  df-on 4297  df-suc 4300  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-recs 6209
This theorem is referenced by:  tfri1d  6239
  Copyright terms: Public domain W3C validator