ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi14d GIF version

Theorem tfrlemi14d 6409
Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.)
Hypotheses
Ref Expression
tfrlemi14d.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemi14d.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
Assertion
Ref Expression
tfrlemi14d (𝜑 → dom recs(𝐹) = On)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑥,𝑦   𝜑,𝑓,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfrlemi14d
Dummy variables 𝑔 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemi14d.1 . . . 4 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem8 6394 . . 3 Ord dom recs(𝐹)
3 ordsson 4538 . . 3 (Ord dom recs(𝐹) → dom recs(𝐹) ⊆ On)
42, 3mp1i 10 . 2 (𝜑 → dom recs(𝐹) ⊆ On)
5 tfrlemi14d.2 . . . . . . . 8 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
61, 5tfrlemi1 6408 . . . . . . 7 ((𝜑𝑧 ∈ On) → ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
75ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
8 simplr 528 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑧 ∈ On)
9 simprl 529 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑔 Fn 𝑧)
10 fneq2 5357 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (𝑔 Fn 𝑤𝑔 Fn 𝑧))
11 raleq 2701 . . . . . . . . . . . . 13 (𝑤 = 𝑧 → (∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢)) ↔ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1210, 11anbi12d 473 . . . . . . . . . . . 12 (𝑤 = 𝑧 → ((𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))) ↔ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))))
1312rspcev 2876 . . . . . . . . . . 11 ((𝑧 ∈ On ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1413adantll 476 . . . . . . . . . 10 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
15 vex 2774 . . . . . . . . . . 11 𝑔 ∈ V
161, 15tfrlem3a 6386 . . . . . . . . . 10 (𝑔𝐴 ↔ ∃𝑤 ∈ On (𝑔 Fn 𝑤 ∧ ∀𝑢𝑤 (𝑔𝑢) = (𝐹‘(𝑔𝑢))))
1714, 16sylibr 134 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑔𝐴)
181, 7, 8, 9, 17tfrlemisucaccv 6401 . . . . . . . 8 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴)
19 vex 2774 . . . . . . . . . . . 12 𝑧 ∈ V
205tfrlem3-2d 6388 . . . . . . . . . . . . 13 (𝜑 → (Fun 𝐹 ∧ (𝐹𝑔) ∈ V))
2120simprd 114 . . . . . . . . . . . 12 (𝜑 → (𝐹𝑔) ∈ V)
22 opexg 4271 . . . . . . . . . . . 12 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
2319, 21, 22sylancr 414 . . . . . . . . . . 11 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ V)
24 snidg 3661 . . . . . . . . . . 11 (⟨𝑧, (𝐹𝑔)⟩ ∈ V → ⟨𝑧, (𝐹𝑔)⟩ ∈ {⟨𝑧, (𝐹𝑔)⟩})
25 elun2 3340 . . . . . . . . . . 11 (⟨𝑧, (𝐹𝑔)⟩ ∈ {⟨𝑧, (𝐹𝑔)⟩} → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
2623, 24, 253syl 17 . . . . . . . . . 10 (𝜑 → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
2726ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
28 opeldmg 4881 . . . . . . . . . . 11 ((𝑧 ∈ V ∧ (𝐹𝑔) ∈ V) → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
2919, 21, 28sylancr 414 . . . . . . . . . 10 (𝜑 → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3029ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → (⟨𝑧, (𝐹𝑔)⟩ ∈ (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3127, 30mpd 13 . . . . . . . 8 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
32 dmeq 4876 . . . . . . . . . 10 ( = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → dom = dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))
3332eleq2d 2274 . . . . . . . . 9 ( = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) → (𝑧 ∈ dom 𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})))
3433rspcev 2876 . . . . . . . 8 (((𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}) ∈ 𝐴𝑧 ∈ dom (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩})) → ∃𝐴 𝑧 ∈ dom )
3518, 31, 34syl2anc 411 . . . . . . 7 (((𝜑𝑧 ∈ On) ∧ (𝑔 Fn 𝑧 ∧ ∀𝑢𝑧 (𝑔𝑢) = (𝐹‘(𝑔𝑢)))) → ∃𝐴 𝑧 ∈ dom )
366, 35exlimddv 1921 . . . . . 6 ((𝜑𝑧 ∈ On) → ∃𝐴 𝑧 ∈ dom )
37 eliun 3930 . . . . . 6 (𝑧 𝐴 dom ↔ ∃𝐴 𝑧 ∈ dom )
3836, 37sylibr 134 . . . . 5 ((𝜑𝑧 ∈ On) → 𝑧 𝐴 dom )
3938ex 115 . . . 4 (𝜑 → (𝑧 ∈ On → 𝑧 𝐴 dom ))
4039ssrdv 3198 . . 3 (𝜑 → On ⊆ 𝐴 dom )
411recsfval 6391 . . . . 5 recs(𝐹) = 𝐴
4241dmeqi 4877 . . . 4 dom recs(𝐹) = dom 𝐴
43 dmuni 4886 . . . 4 dom 𝐴 = 𝐴 dom
4442, 43eqtri 2225 . . 3 dom recs(𝐹) = 𝐴 dom
4540, 44sseqtrrdi 3241 . 2 (𝜑 → On ⊆ dom recs(𝐹))
464, 45eqssd 3209 1 (𝜑 → dom recs(𝐹) = On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1370   = wceq 1372  wcel 2175  {cab 2190  wral 2483  wrex 2484  Vcvv 2771  cun 3163  wss 3165  {csn 3632  cop 3635   cuni 3849   ciun 3926  Ord word 4407  Oncon0 4408  dom cdm 4673  cres 4675  Fun wfun 5262   Fn wfn 5263  cfv 5268  recscrecs 6380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-recs 6381
This theorem is referenced by:  tfri1d  6411
  Copyright terms: Public domain W3C validator