Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemiubacc GIF version

Theorem tfrlemiubacc 6271
 Description: The union of 𝐵 satisfies the recursion rule (lemma for tfrlemi1 6273). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemi1.3 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
tfrlemi1.4 (𝜑𝑥 ∈ On)
tfrlemi1.5 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
Assertion
Ref Expression
tfrlemiubacc (𝜑 → ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))
Distinct variable groups:   𝑓,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦   𝑢,𝐵,𝑤,𝑓,𝑔,,𝑧   𝜑,𝑔,,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑓)   𝐵(𝑥,𝑦)

Proof of Theorem tfrlemiubacc
StepHypRef Expression
1 tfrlemisucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 tfrlemisucfn.2 . . . . . . . . 9 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
3 tfrlemi1.3 . . . . . . . . 9 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
4 tfrlemi1.4 . . . . . . . . 9 (𝜑𝑥 ∈ On)
5 tfrlemi1.5 . . . . . . . . 9 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
61, 2, 3, 4, 5tfrlemibfn 6269 . . . . . . . 8 (𝜑 𝐵 Fn 𝑥)
7 fndm 5266 . . . . . . . 8 ( 𝐵 Fn 𝑥 → dom 𝐵 = 𝑥)
86, 7syl 14 . . . . . . 7 (𝜑 → dom 𝐵 = 𝑥)
91, 2, 3, 4, 5tfrlemibacc 6267 . . . . . . . . . 10 (𝜑𝐵𝐴)
109unissd 3796 . . . . . . . . 9 (𝜑 𝐵 𝐴)
111recsfval 6256 . . . . . . . . 9 recs(𝐹) = 𝐴
1210, 11sseqtrrdi 3177 . . . . . . . 8 (𝜑 𝐵 ⊆ recs(𝐹))
13 dmss 4782 . . . . . . . 8 ( 𝐵 ⊆ recs(𝐹) → dom 𝐵 ⊆ dom recs(𝐹))
1412, 13syl 14 . . . . . . 7 (𝜑 → dom 𝐵 ⊆ dom recs(𝐹))
158, 14eqsstrrd 3165 . . . . . 6 (𝜑𝑥 ⊆ dom recs(𝐹))
1615sselda 3128 . . . . 5 ((𝜑𝑤𝑥) → 𝑤 ∈ dom recs(𝐹))
171tfrlem9 6260 . . . . 5 (𝑤 ∈ dom recs(𝐹) → (recs(𝐹)‘𝑤) = (𝐹‘(recs(𝐹) ↾ 𝑤)))
1816, 17syl 14 . . . 4 ((𝜑𝑤𝑥) → (recs(𝐹)‘𝑤) = (𝐹‘(recs(𝐹) ↾ 𝑤)))
191tfrlem7 6258 . . . . . 6 Fun recs(𝐹)
2019a1i 9 . . . . 5 ((𝜑𝑤𝑥) → Fun recs(𝐹))
2112adantr 274 . . . . 5 ((𝜑𝑤𝑥) → 𝐵 ⊆ recs(𝐹))
228eleq2d 2227 . . . . . 6 (𝜑 → (𝑤 ∈ dom 𝐵𝑤𝑥))
2322biimpar 295 . . . . 5 ((𝜑𝑤𝑥) → 𝑤 ∈ dom 𝐵)
24 funssfv 5491 . . . . 5 ((Fun recs(𝐹) ∧ 𝐵 ⊆ recs(𝐹) ∧ 𝑤 ∈ dom 𝐵) → (recs(𝐹)‘𝑤) = ( 𝐵𝑤))
2520, 21, 23, 24syl3anc 1220 . . . 4 ((𝜑𝑤𝑥) → (recs(𝐹)‘𝑤) = ( 𝐵𝑤))
26 eloni 4334 . . . . . . . . 9 (𝑥 ∈ On → Ord 𝑥)
274, 26syl 14 . . . . . . . 8 (𝜑 → Ord 𝑥)
28 ordelss 4338 . . . . . . . 8 ((Ord 𝑥𝑤𝑥) → 𝑤𝑥)
2927, 28sylan 281 . . . . . . 7 ((𝜑𝑤𝑥) → 𝑤𝑥)
308adantr 274 . . . . . . 7 ((𝜑𝑤𝑥) → dom 𝐵 = 𝑥)
3129, 30sseqtrrd 3167 . . . . . 6 ((𝜑𝑤𝑥) → 𝑤 ⊆ dom 𝐵)
32 fun2ssres 5210 . . . . . 6 ((Fun recs(𝐹) ∧ 𝐵 ⊆ recs(𝐹) ∧ 𝑤 ⊆ dom 𝐵) → (recs(𝐹) ↾ 𝑤) = ( 𝐵𝑤))
3320, 21, 31, 32syl3anc 1220 . . . . 5 ((𝜑𝑤𝑥) → (recs(𝐹) ↾ 𝑤) = ( 𝐵𝑤))
3433fveq2d 5469 . . . 4 ((𝜑𝑤𝑥) → (𝐹‘(recs(𝐹) ↾ 𝑤)) = (𝐹‘( 𝐵𝑤)))
3518, 25, 343eqtr3d 2198 . . 3 ((𝜑𝑤𝑥) → ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤)))
3635ralrimiva 2530 . 2 (𝜑 → ∀𝑤𝑥 ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤)))
37 fveq2 5465 . . . 4 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
38 reseq2 4858 . . . . 5 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
3938fveq2d 5469 . . . 4 (𝑢 = 𝑤 → (𝐹‘( 𝐵𝑢)) = (𝐹‘( 𝐵𝑤)))
4037, 39eqeq12d 2172 . . 3 (𝑢 = 𝑤 → (( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)) ↔ ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤))))
4140cbvralv 2680 . 2 (∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)) ↔ ∀𝑤𝑥 ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤)))
4236, 41sylibr 133 1 (𝜑 → ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963  ∀wal 1333   = wceq 1335  ∃wex 1472   ∈ wcel 2128  {cab 2143  ∀wral 2435  ∃wrex 2436  Vcvv 2712   ∪ cun 3100   ⊆ wss 3102  {csn 3560  ⟨cop 3563  ∪ cuni 3772  Ord word 4321  Oncon0 4322  dom cdm 4583   ↾ cres 4585  Fun wfun 5161   Fn wfn 5162  ‘cfv 5167  recscrecs 6245 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-suc 4330  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-recs 6246 This theorem is referenced by:  tfrlemiex  6272
 Copyright terms: Public domain W3C validator