Proof of Theorem tfrlemiubacc
| Step | Hyp | Ref
| Expression |
| 1 | | tfrlemisucfn.1 |
. . . . . . . . 9
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 2 | | tfrlemisucfn.2 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹‘𝑥) ∈ V)) |
| 3 | | tfrlemi1.3 |
. . . . . . . . 9
⊢ 𝐵 = {ℎ ∣ ∃𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ 𝑔 ∈ 𝐴 ∧ ℎ = (𝑔 ∪ {〈𝑧, (𝐹‘𝑔)〉}))} |
| 4 | | tfrlemi1.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑥 ∈ On) |
| 5 | | tfrlemi1.5 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ 𝑥 ∃𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
| 6 | 1, 2, 3, 4, 5 | tfrlemibfn 6386 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝐵 Fn
𝑥) |
| 7 | | fndm 5357 |
. . . . . . . 8
⊢ (∪ 𝐵 Fn
𝑥 → dom ∪ 𝐵 =
𝑥) |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
⊢ (𝜑 → dom ∪ 𝐵 =
𝑥) |
| 9 | 1, 2, 3, 4, 5 | tfrlemibacc 6384 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| 10 | 9 | unissd 3863 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝐵
⊆ ∪ 𝐴) |
| 11 | 1 | recsfval 6373 |
. . . . . . . . 9
⊢
recs(𝐹) = ∪ 𝐴 |
| 12 | 10, 11 | sseqtrrdi 3232 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝐵
⊆ recs(𝐹)) |
| 13 | | dmss 4865 |
. . . . . . . 8
⊢ (∪ 𝐵
⊆ recs(𝐹) → dom
∪ 𝐵 ⊆ dom recs(𝐹)) |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
⊢ (𝜑 → dom ∪ 𝐵
⊆ dom recs(𝐹)) |
| 15 | 8, 14 | eqsstrrd 3220 |
. . . . . 6
⊢ (𝜑 → 𝑥 ⊆ dom recs(𝐹)) |
| 16 | 15 | sselda 3183 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → 𝑤 ∈ dom recs(𝐹)) |
| 17 | 1 | tfrlem9 6377 |
. . . . 5
⊢ (𝑤 ∈ dom recs(𝐹) → (recs(𝐹)‘𝑤) = (𝐹‘(recs(𝐹) ↾ 𝑤))) |
| 18 | 16, 17 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → (recs(𝐹)‘𝑤) = (𝐹‘(recs(𝐹) ↾ 𝑤))) |
| 19 | 1 | tfrlem7 6375 |
. . . . . 6
⊢ Fun
recs(𝐹) |
| 20 | 19 | a1i 9 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → Fun recs(𝐹)) |
| 21 | 12 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → ∪ 𝐵 ⊆ recs(𝐹)) |
| 22 | 8 | eleq2d 2266 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ dom ∪
𝐵 ↔ 𝑤 ∈ 𝑥)) |
| 23 | 22 | biimpar 297 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → 𝑤 ∈ dom ∪
𝐵) |
| 24 | | funssfv 5584 |
. . . . 5
⊢ ((Fun
recs(𝐹) ∧ ∪ 𝐵
⊆ recs(𝐹) ∧ 𝑤 ∈ dom ∪ 𝐵)
→ (recs(𝐹)‘𝑤) = (∪ 𝐵‘𝑤)) |
| 25 | 20, 21, 23, 24 | syl3anc 1249 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → (recs(𝐹)‘𝑤) = (∪ 𝐵‘𝑤)) |
| 26 | | eloni 4410 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → Ord 𝑥) |
| 27 | 4, 26 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → Ord 𝑥) |
| 28 | | ordelss 4414 |
. . . . . . . 8
⊢ ((Ord
𝑥 ∧ 𝑤 ∈ 𝑥) → 𝑤 ⊆ 𝑥) |
| 29 | 27, 28 | sylan 283 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → 𝑤 ⊆ 𝑥) |
| 30 | 8 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → dom ∪
𝐵 = 𝑥) |
| 31 | 29, 30 | sseqtrrd 3222 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → 𝑤 ⊆ dom ∪
𝐵) |
| 32 | | fun2ssres 5301 |
. . . . . 6
⊢ ((Fun
recs(𝐹) ∧ ∪ 𝐵
⊆ recs(𝐹) ∧ 𝑤 ⊆ dom ∪ 𝐵)
→ (recs(𝐹) ↾
𝑤) = (∪ 𝐵
↾ 𝑤)) |
| 33 | 20, 21, 31, 32 | syl3anc 1249 |
. . . . 5
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → (recs(𝐹) ↾ 𝑤) = (∪ 𝐵 ↾ 𝑤)) |
| 34 | 33 | fveq2d 5562 |
. . . 4
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → (𝐹‘(recs(𝐹) ↾ 𝑤)) = (𝐹‘(∪ 𝐵 ↾ 𝑤))) |
| 35 | 18, 25, 34 | 3eqtr3d 2237 |
. . 3
⊢ ((𝜑 ∧ 𝑤 ∈ 𝑥) → (∪ 𝐵‘𝑤) = (𝐹‘(∪ 𝐵 ↾ 𝑤))) |
| 36 | 35 | ralrimiva 2570 |
. 2
⊢ (𝜑 → ∀𝑤 ∈ 𝑥 (∪ 𝐵‘𝑤) = (𝐹‘(∪ 𝐵 ↾ 𝑤))) |
| 37 | | fveq2 5558 |
. . . 4
⊢ (𝑢 = 𝑤 → (∪ 𝐵‘𝑢) = (∪ 𝐵‘𝑤)) |
| 38 | | reseq2 4941 |
. . . . 5
⊢ (𝑢 = 𝑤 → (∪ 𝐵 ↾ 𝑢) = (∪ 𝐵 ↾ 𝑤)) |
| 39 | 38 | fveq2d 5562 |
. . . 4
⊢ (𝑢 = 𝑤 → (𝐹‘(∪ 𝐵 ↾ 𝑢)) = (𝐹‘(∪ 𝐵 ↾ 𝑤))) |
| 40 | 37, 39 | eqeq12d 2211 |
. . 3
⊢ (𝑢 = 𝑤 → ((∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢)) ↔ (∪ 𝐵‘𝑤) = (𝐹‘(∪ 𝐵 ↾ 𝑤)))) |
| 41 | 40 | cbvralv 2729 |
. 2
⊢
(∀𝑢 ∈
𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢)) ↔ ∀𝑤 ∈ 𝑥 (∪ 𝐵‘𝑤) = (𝐹‘(∪ 𝐵 ↾ 𝑤))) |
| 42 | 36, 41 | sylibr 134 |
1
⊢ (𝜑 → ∀𝑢 ∈ 𝑥 (∪ 𝐵‘𝑢) = (𝐹‘(∪ 𝐵 ↾ 𝑢))) |