ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemiubacc GIF version

Theorem tfrlemiubacc 6474
Description: The union of 𝐵 satisfies the recursion rule (lemma for tfrlemi1 6476). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlemisucfn.2 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
tfrlemi1.3 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
tfrlemi1.4 (𝜑𝑥 ∈ On)
tfrlemi1.5 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
Assertion
Ref Expression
tfrlemiubacc (𝜑 → ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))
Distinct variable groups:   𝑓,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑓,𝐹,𝑔,,𝑢,𝑤,𝑥,𝑦,𝑧   𝜑,𝑤,𝑦   𝑢,𝐵,𝑤,𝑓,𝑔,,𝑧   𝜑,𝑔,,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑓)   𝐵(𝑥,𝑦)

Proof of Theorem tfrlemiubacc
StepHypRef Expression
1 tfrlemisucfn.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
2 tfrlemisucfn.2 . . . . . . . . 9 (𝜑 → ∀𝑥(Fun 𝐹 ∧ (𝐹𝑥) ∈ V))
3 tfrlemi1.3 . . . . . . . . 9 𝐵 = { ∣ ∃𝑧𝑥𝑔(𝑔 Fn 𝑧𝑔𝐴 = (𝑔 ∪ {⟨𝑧, (𝐹𝑔)⟩}))}
4 tfrlemi1.4 . . . . . . . . 9 (𝜑𝑥 ∈ On)
5 tfrlemi1.5 . . . . . . . . 9 (𝜑 → ∀𝑧𝑥𝑔(𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
61, 2, 3, 4, 5tfrlemibfn 6472 . . . . . . . 8 (𝜑 𝐵 Fn 𝑥)
7 fndm 5419 . . . . . . . 8 ( 𝐵 Fn 𝑥 → dom 𝐵 = 𝑥)
86, 7syl 14 . . . . . . 7 (𝜑 → dom 𝐵 = 𝑥)
91, 2, 3, 4, 5tfrlemibacc 6470 . . . . . . . . . 10 (𝜑𝐵𝐴)
109unissd 3911 . . . . . . . . 9 (𝜑 𝐵 𝐴)
111recsfval 6459 . . . . . . . . 9 recs(𝐹) = 𝐴
1210, 11sseqtrrdi 3273 . . . . . . . 8 (𝜑 𝐵 ⊆ recs(𝐹))
13 dmss 4921 . . . . . . . 8 ( 𝐵 ⊆ recs(𝐹) → dom 𝐵 ⊆ dom recs(𝐹))
1412, 13syl 14 . . . . . . 7 (𝜑 → dom 𝐵 ⊆ dom recs(𝐹))
158, 14eqsstrrd 3261 . . . . . 6 (𝜑𝑥 ⊆ dom recs(𝐹))
1615sselda 3224 . . . . 5 ((𝜑𝑤𝑥) → 𝑤 ∈ dom recs(𝐹))
171tfrlem9 6463 . . . . 5 (𝑤 ∈ dom recs(𝐹) → (recs(𝐹)‘𝑤) = (𝐹‘(recs(𝐹) ↾ 𝑤)))
1816, 17syl 14 . . . 4 ((𝜑𝑤𝑥) → (recs(𝐹)‘𝑤) = (𝐹‘(recs(𝐹) ↾ 𝑤)))
191tfrlem7 6461 . . . . . 6 Fun recs(𝐹)
2019a1i 9 . . . . 5 ((𝜑𝑤𝑥) → Fun recs(𝐹))
2112adantr 276 . . . . 5 ((𝜑𝑤𝑥) → 𝐵 ⊆ recs(𝐹))
228eleq2d 2299 . . . . . 6 (𝜑 → (𝑤 ∈ dom 𝐵𝑤𝑥))
2322biimpar 297 . . . . 5 ((𝜑𝑤𝑥) → 𝑤 ∈ dom 𝐵)
24 funssfv 5652 . . . . 5 ((Fun recs(𝐹) ∧ 𝐵 ⊆ recs(𝐹) ∧ 𝑤 ∈ dom 𝐵) → (recs(𝐹)‘𝑤) = ( 𝐵𝑤))
2520, 21, 23, 24syl3anc 1271 . . . 4 ((𝜑𝑤𝑥) → (recs(𝐹)‘𝑤) = ( 𝐵𝑤))
26 eloni 4465 . . . . . . . . 9 (𝑥 ∈ On → Ord 𝑥)
274, 26syl 14 . . . . . . . 8 (𝜑 → Ord 𝑥)
28 ordelss 4469 . . . . . . . 8 ((Ord 𝑥𝑤𝑥) → 𝑤𝑥)
2927, 28sylan 283 . . . . . . 7 ((𝜑𝑤𝑥) → 𝑤𝑥)
308adantr 276 . . . . . . 7 ((𝜑𝑤𝑥) → dom 𝐵 = 𝑥)
3129, 30sseqtrrd 3263 . . . . . 6 ((𝜑𝑤𝑥) → 𝑤 ⊆ dom 𝐵)
32 fun2ssres 5360 . . . . . 6 ((Fun recs(𝐹) ∧ 𝐵 ⊆ recs(𝐹) ∧ 𝑤 ⊆ dom 𝐵) → (recs(𝐹) ↾ 𝑤) = ( 𝐵𝑤))
3320, 21, 31, 32syl3anc 1271 . . . . 5 ((𝜑𝑤𝑥) → (recs(𝐹) ↾ 𝑤) = ( 𝐵𝑤))
3433fveq2d 5630 . . . 4 ((𝜑𝑤𝑥) → (𝐹‘(recs(𝐹) ↾ 𝑤)) = (𝐹‘( 𝐵𝑤)))
3518, 25, 343eqtr3d 2270 . . 3 ((𝜑𝑤𝑥) → ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤)))
3635ralrimiva 2603 . 2 (𝜑 → ∀𝑤𝑥 ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤)))
37 fveq2 5626 . . . 4 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
38 reseq2 4999 . . . . 5 (𝑢 = 𝑤 → ( 𝐵𝑢) = ( 𝐵𝑤))
3938fveq2d 5630 . . . 4 (𝑢 = 𝑤 → (𝐹‘( 𝐵𝑢)) = (𝐹‘( 𝐵𝑤)))
4037, 39eqeq12d 2244 . . 3 (𝑢 = 𝑤 → (( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)) ↔ ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤))))
4140cbvralv 2765 . 2 (∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)) ↔ ∀𝑤𝑥 ( 𝐵𝑤) = (𝐹‘( 𝐵𝑤)))
4236, 41sylibr 134 1 (𝜑 → ∀𝑢𝑥 ( 𝐵𝑢) = (𝐹‘( 𝐵𝑢)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wal 1393   = wceq 1395  wex 1538  wcel 2200  {cab 2215  wral 2508  wrex 2509  Vcvv 2799  cun 3195  wss 3197  {csn 3666  cop 3669   cuni 3887  Ord word 4452  Oncon0 4453  dom cdm 4718  cres 4720  Fun wfun 5311   Fn wfn 5312  cfv 5317  recscrecs 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-recs 6449
This theorem is referenced by:  tfrlemiex  6475
  Copyright terms: Public domain W3C validator