Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlem6 | GIF version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem6 | ⊢ Rel recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reluni 4734 | . . 3 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑔 ∈ 𝐴 Rel 𝑔) | |
2 | tfrlem.1 | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
3 | 2 | tfrlem4 6292 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) |
4 | funrel 5215 | . . . 4 ⊢ (Fun 𝑔 → Rel 𝑔) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (𝑔 ∈ 𝐴 → Rel 𝑔) |
6 | 1, 5 | mprgbir 2528 | . 2 ⊢ Rel ∪ 𝐴 |
7 | 2 | recsfval 6294 | . . 3 ⊢ recs(𝐹) = ∪ 𝐴 |
8 | 7 | releqi 4694 | . 2 ⊢ (Rel recs(𝐹) ↔ Rel ∪ 𝐴) |
9 | 6, 8 | mpbir 145 | 1 ⊢ Rel recs(𝐹) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 ∃wrex 2449 ∪ cuni 3796 Oncon0 4348 ↾ cres 4613 Rel wrel 4616 Fun wfun 5192 Fn wfn 5193 ‘cfv 5198 recscrecs 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-recs 6284 |
This theorem is referenced by: tfrlem7 6296 |
Copyright terms: Public domain | W3C validator |