ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem6 GIF version

Theorem tfrlem6 6401
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem6 Rel recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 reluni 4797 . . 3 (Rel 𝐴 ↔ ∀𝑔𝐴 Rel 𝑔)
2 tfrlem.1 . . . . 5 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
32tfrlem4 6398 . . . 4 (𝑔𝐴 → Fun 𝑔)
4 funrel 5287 . . . 4 (Fun 𝑔 → Rel 𝑔)
53, 4syl 14 . . 3 (𝑔𝐴 → Rel 𝑔)
61, 5mprgbir 2563 . 2 Rel 𝐴
72recsfval 6400 . . 3 recs(𝐹) = 𝐴
87releqi 4757 . 2 (Rel recs(𝐹) ↔ Rel 𝐴)
96, 8mpbir 146 1 Rel recs(𝐹)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1372  wcel 2175  {cab 2190  wral 2483  wrex 2484   cuni 3849  Oncon0 4409  cres 4676  Rel wrel 4679  Fun wfun 5264   Fn wfn 5265  cfv 5270  recscrecs 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-recs 6390
This theorem is referenced by:  tfrlem7  6402
  Copyright terms: Public domain W3C validator