ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem6 GIF version

Theorem tfrlem6 6415
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem6 Rel recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 reluni 4806 . . 3 (Rel 𝐴 ↔ ∀𝑔𝐴 Rel 𝑔)
2 tfrlem.1 . . . . 5 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
32tfrlem4 6412 . . . 4 (𝑔𝐴 → Fun 𝑔)
4 funrel 5297 . . . 4 (Fun 𝑔 → Rel 𝑔)
53, 4syl 14 . . 3 (𝑔𝐴 → Rel 𝑔)
61, 5mprgbir 2565 . 2 Rel 𝐴
72recsfval 6414 . . 3 recs(𝐹) = 𝐴
87releqi 4766 . 2 (Rel recs(𝐹) ↔ Rel 𝐴)
96, 8mpbir 146 1 Rel recs(𝐹)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wcel 2177  {cab 2192  wral 2485  wrex 2486   cuni 3856  Oncon0 4418  cres 4685  Rel wrel 4688  Fun wfun 5274   Fn wfn 5275  cfv 5280  recscrecs 6403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-iun 3935  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-recs 6404
This theorem is referenced by:  tfrlem7  6416
  Copyright terms: Public domain W3C validator