![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tfrlem6 | GIF version |
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
Ref | Expression |
---|---|
tfrlem6 | ⊢ Rel recs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reluni 4575 | . . 3 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑔 ∈ 𝐴 Rel 𝑔) | |
2 | tfrlem.1 | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
3 | 2 | tfrlem4 6094 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) |
4 | funrel 5047 | . . . 4 ⊢ (Fun 𝑔 → Rel 𝑔) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (𝑔 ∈ 𝐴 → Rel 𝑔) |
6 | 1, 5 | mprgbir 2434 | . 2 ⊢ Rel ∪ 𝐴 |
7 | 2 | recsfval 6096 | . . 3 ⊢ recs(𝐹) = ∪ 𝐴 |
8 | 7 | releqi 4536 | . 2 ⊢ (Rel recs(𝐹) ↔ Rel ∪ 𝐴) |
9 | 6, 8 | mpbir 145 | 1 ⊢ Rel recs(𝐹) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1290 ∈ wcel 1439 {cab 2075 ∀wral 2360 ∃wrex 2361 ∪ cuni 3661 Oncon0 4201 ↾ cres 4456 Rel wrel 4459 Fun wfun 5024 Fn wfn 5025 ‘cfv 5030 recscrecs 6085 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2624 df-un 3006 df-in 3008 df-ss 3015 df-sn 3458 df-pr 3459 df-op 3461 df-uni 3662 df-iun 3740 df-br 3854 df-opab 3908 df-xp 4460 df-rel 4461 df-cnv 4462 df-co 4463 df-dm 4464 df-res 4466 df-iota 4995 df-fun 5032 df-fn 5033 df-fv 5038 df-recs 6086 |
This theorem is referenced by: tfrlem7 6098 |
Copyright terms: Public domain | W3C validator |