ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem6 GIF version

Theorem tfrlem6 6383
Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem6 Rel recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 reluni 4787 . . 3 (Rel 𝐴 ↔ ∀𝑔𝐴 Rel 𝑔)
2 tfrlem.1 . . . . 5 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
32tfrlem4 6380 . . . 4 (𝑔𝐴 → Fun 𝑔)
4 funrel 5276 . . . 4 (Fun 𝑔 → Rel 𝑔)
53, 4syl 14 . . 3 (𝑔𝐴 → Rel 𝑔)
61, 5mprgbir 2555 . 2 Rel 𝐴
72recsfval 6382 . . 3 recs(𝐹) = 𝐴
87releqi 4747 . 2 (Rel recs(𝐹) ↔ Rel 𝐴)
96, 8mpbir 146 1 Rel recs(𝐹)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476   cuni 3840  Oncon0 4399  cres 4666  Rel wrel 4669  Fun wfun 5253   Fn wfn 5254  cfv 5259  recscrecs 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-recs 6372
This theorem is referenced by:  tfrlem7  6384
  Copyright terms: Public domain W3C validator