| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlem6 | GIF version | ||
| Description: Lemma for transfinite recursion. The union of all acceptable functions is a relation. (Contributed by NM, 8-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| tfrlem.1 | ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| Ref | Expression |
|---|---|
| tfrlem6 | ⊢ Rel recs(𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reluni 4841 | . . 3 ⊢ (Rel ∪ 𝐴 ↔ ∀𝑔 ∈ 𝐴 Rel 𝑔) | |
| 2 | tfrlem.1 | . . . . 5 ⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} | |
| 3 | 2 | tfrlem4 6457 | . . . 4 ⊢ (𝑔 ∈ 𝐴 → Fun 𝑔) |
| 4 | funrel 5334 | . . . 4 ⊢ (Fun 𝑔 → Rel 𝑔) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ (𝑔 ∈ 𝐴 → Rel 𝑔) |
| 6 | 1, 5 | mprgbir 2588 | . 2 ⊢ Rel ∪ 𝐴 |
| 7 | 2 | recsfval 6459 | . . 3 ⊢ recs(𝐹) = ∪ 𝐴 |
| 8 | 7 | releqi 4801 | . 2 ⊢ (Rel recs(𝐹) ↔ Rel ∪ 𝐴) |
| 9 | 6, 8 | mpbir 146 | 1 ⊢ Rel recs(𝐹) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 ∪ cuni 3887 Oncon0 4453 ↾ cres 4720 Rel wrel 4723 Fun wfun 5311 Fn wfn 5312 ‘cfv 5317 recscrecs 6448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-recs 6449 |
| This theorem is referenced by: tfrlem7 6461 |
| Copyright terms: Public domain | W3C validator |