Step | Hyp | Ref
| Expression |
1 | | tfrlem.1 |
. . 3
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
2 | 1 | tfrlem6 6284 |
. 2
⊢ Rel
recs(𝐹) |
3 | 1 | recsfval 6283 |
. . . . . . . . 9
⊢
recs(𝐹) = ∪ 𝐴 |
4 | 3 | eleq2i 2233 |
. . . . . . . 8
⊢
(〈𝑥, 𝑢〉 ∈ recs(𝐹) ↔ 〈𝑥, 𝑢〉 ∈ ∪
𝐴) |
5 | | eluni 3792 |
. . . . . . . 8
⊢
(〈𝑥, 𝑢〉 ∈ ∪ 𝐴
↔ ∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) |
6 | 4, 5 | bitri 183 |
. . . . . . 7
⊢
(〈𝑥, 𝑢〉 ∈ recs(𝐹) ↔ ∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴)) |
7 | 3 | eleq2i 2233 |
. . . . . . . 8
⊢
(〈𝑥, 𝑣〉 ∈ recs(𝐹) ↔ 〈𝑥, 𝑣〉 ∈ ∪
𝐴) |
8 | | eluni 3792 |
. . . . . . . 8
⊢
(〈𝑥, 𝑣〉 ∈ ∪ 𝐴
↔ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) |
9 | 7, 8 | bitri 183 |
. . . . . . 7
⊢
(〈𝑥, 𝑣〉 ∈ recs(𝐹) ↔ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) |
10 | 6, 9 | anbi12i 456 |
. . . . . 6
⊢
((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) ↔ (∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴))) |
11 | | eeanv 1920 |
. . . . . 6
⊢
(∃𝑔∃ℎ((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) ↔ (∃𝑔(〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ ∃ℎ(〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴))) |
12 | 10, 11 | bitr4i 186 |
. . . . 5
⊢
((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) ↔ ∃𝑔∃ℎ((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴))) |
13 | | df-br 3983 |
. . . . . . . . 9
⊢ (𝑥𝑔𝑢 ↔ 〈𝑥, 𝑢〉 ∈ 𝑔) |
14 | | df-br 3983 |
. . . . . . . . 9
⊢ (𝑥ℎ𝑣 ↔ 〈𝑥, 𝑣〉 ∈ ℎ) |
15 | 13, 14 | anbi12i 456 |
. . . . . . . 8
⊢ ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ↔ (〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 〈𝑥, 𝑣〉 ∈ ℎ)) |
16 | 1 | tfrlem5 6282 |
. . . . . . . . 9
⊢ ((𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
17 | 16 | impcom 124 |
. . . . . . . 8
⊢ (((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
18 | 15, 17 | sylanbr 283 |
. . . . . . 7
⊢
(((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 〈𝑥, 𝑣〉 ∈ ℎ) ∧ (𝑔 ∈ 𝐴 ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
19 | 18 | an4s 578 |
. . . . . 6
⊢
(((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
20 | 19 | exlimivv 1884 |
. . . . 5
⊢
(∃𝑔∃ℎ((〈𝑥, 𝑢〉 ∈ 𝑔 ∧ 𝑔 ∈ 𝐴) ∧ (〈𝑥, 𝑣〉 ∈ ℎ ∧ ℎ ∈ 𝐴)) → 𝑢 = 𝑣) |
21 | 12, 20 | sylbi 120 |
. . . 4
⊢
((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣) |
22 | 21 | ax-gen 1437 |
. . 3
⊢
∀𝑣((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣) |
23 | 22 | gen2 1438 |
. 2
⊢
∀𝑥∀𝑢∀𝑣((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣) |
24 | | dffun4 5199 |
. 2
⊢ (Fun
recs(𝐹) ↔ (Rel
recs(𝐹) ∧ ∀𝑥∀𝑢∀𝑣((〈𝑥, 𝑢〉 ∈ recs(𝐹) ∧ 〈𝑥, 𝑣〉 ∈ recs(𝐹)) → 𝑢 = 𝑣))) |
25 | 2, 23, 24 | mpbir2an 932 |
1
⊢ Fun
recs(𝐹) |