ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem8 GIF version

Theorem tfrlem8 6322
Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem8 Ord dom recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem8
Dummy variables 𝑔 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem3 6315 . . . . . . . 8 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤)))}
32abeq2i 2288 . . . . . . 7 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
4 fndm 5317 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
54adantr 276 . . . . . . . . . 10 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 = 𝑧)
65eleq1d 2246 . . . . . . . . 9 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (dom 𝑔 ∈ On ↔ 𝑧 ∈ On))
76biimprcd 160 . . . . . . . 8 (𝑧 ∈ On → ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 ∈ On))
87rexlimiv 2588 . . . . . . 7 (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 ∈ On)
93, 8sylbi 121 . . . . . 6 (𝑔𝐴 → dom 𝑔 ∈ On)
10 eleq1a 2249 . . . . . 6 (dom 𝑔 ∈ On → (𝑧 = dom 𝑔𝑧 ∈ On))
119, 10syl 14 . . . . 5 (𝑔𝐴 → (𝑧 = dom 𝑔𝑧 ∈ On))
1211rexlimiv 2588 . . . 4 (∃𝑔𝐴 𝑧 = dom 𝑔𝑧 ∈ On)
1312abssi 3232 . . 3 {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} ⊆ On
14 ssorduni 4488 . . 3 ({𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} ⊆ On → Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔})
1513, 14ax-mp 5 . 2 Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
161recsfval 6319 . . . . 5 recs(𝐹) = 𝐴
1716dmeqi 4830 . . . 4 dom recs(𝐹) = dom 𝐴
18 dmuni 4839 . . . 4 dom 𝐴 = 𝑔𝐴 dom 𝑔
19 vex 2742 . . . . . 6 𝑔 ∈ V
2019dmex 4895 . . . . 5 dom 𝑔 ∈ V
2120dfiun2 3922 . . . 4 𝑔𝐴 dom 𝑔 = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
2217, 18, 213eqtri 2202 . . 3 dom recs(𝐹) = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
23 ordeq 4374 . . 3 (dom recs(𝐹) = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} → (Ord dom recs(𝐹) ↔ Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}))
2422, 23ax-mp 5 . 2 (Ord dom recs(𝐹) ↔ Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔})
2515, 24mpbir 146 1 Ord dom recs(𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  {cab 2163  wral 2455  wrex 2456  wss 3131   cuni 3811   ciun 3888  Ord word 4364  Oncon0 4365  dom cdm 4628  cres 4630   Fn wfn 5213  cfv 5218  recscrecs 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-tr 4104  df-iord 4368  df-on 4370  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-recs 6309
This theorem is referenced by:  tfrlemi14d  6337  tfri1dALT  6355
  Copyright terms: Public domain W3C validator