ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem8 GIF version

Theorem tfrlem8 6223
Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
Hypothesis
Ref Expression
tfrlem.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
Assertion
Ref Expression
tfrlem8 Ord dom recs(𝐹)
Distinct variable group:   𝑥,𝑓,𝑦,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑓)

Proof of Theorem tfrlem8
Dummy variables 𝑔 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . . . . 9 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
21tfrlem3 6216 . . . . . . . 8 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤)))}
32abeq2i 2251 . . . . . . 7 (𝑔𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))))
4 fndm 5230 . . . . . . . . . . 11 (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧)
54adantr 274 . . . . . . . . . 10 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 = 𝑧)
65eleq1d 2209 . . . . . . . . 9 ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → (dom 𝑔 ∈ On ↔ 𝑧 ∈ On))
76biimprcd 159 . . . . . . . 8 (𝑧 ∈ On → ((𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 ∈ On))
87rexlimiv 2546 . . . . . . 7 (∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤𝑧 (𝑔𝑤) = (𝐹‘(𝑔𝑤))) → dom 𝑔 ∈ On)
93, 8sylbi 120 . . . . . 6 (𝑔𝐴 → dom 𝑔 ∈ On)
10 eleq1a 2212 . . . . . 6 (dom 𝑔 ∈ On → (𝑧 = dom 𝑔𝑧 ∈ On))
119, 10syl 14 . . . . 5 (𝑔𝐴 → (𝑧 = dom 𝑔𝑧 ∈ On))
1211rexlimiv 2546 . . . 4 (∃𝑔𝐴 𝑧 = dom 𝑔𝑧 ∈ On)
1312abssi 3177 . . 3 {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} ⊆ On
14 ssorduni 4411 . . 3 ({𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} ⊆ On → Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔})
1513, 14ax-mp 5 . 2 Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
161recsfval 6220 . . . . 5 recs(𝐹) = 𝐴
1716dmeqi 4748 . . . 4 dom recs(𝐹) = dom 𝐴
18 dmuni 4757 . . . 4 dom 𝐴 = 𝑔𝐴 dom 𝑔
19 vex 2692 . . . . . 6 𝑔 ∈ V
2019dmex 4813 . . . . 5 dom 𝑔 ∈ V
2120dfiun2 3855 . . . 4 𝑔𝐴 dom 𝑔 = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
2217, 18, 213eqtri 2165 . . 3 dom recs(𝐹) = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}
23 ordeq 4302 . . 3 (dom recs(𝐹) = {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔} → (Ord dom recs(𝐹) ↔ Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔}))
2422, 23ax-mp 5 . 2 (Ord dom recs(𝐹) ↔ Ord {𝑧 ∣ ∃𝑔𝐴 𝑧 = dom 𝑔})
2515, 24mpbir 145 1 Ord dom recs(𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  {cab 2126  wral 2417  wrex 2418  wss 3076   cuni 3744   ciun 3821  Ord word 4292  Oncon0 4293  dom cdm 4547  cres 4549   Fn wfn 5126  cfv 5131  recscrecs 6209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-tr 4035  df-iord 4296  df-on 4298  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139  df-recs 6210
This theorem is referenced by:  tfrlemi14d  6238  tfri1dALT  6256
  Copyright terms: Public domain W3C validator