| Step | Hyp | Ref
| Expression |
| 1 | | tfrlem.1 |
. . . . . . . . 9
⊢ 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ 𝑦)))} |
| 2 | 1 | tfrlem3 6369 |
. . . . . . . 8
⊢ 𝐴 = {𝑔 ∣ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))} |
| 3 | 2 | abeq2i 2307 |
. . . . . . 7
⊢ (𝑔 ∈ 𝐴 ↔ ∃𝑧 ∈ On (𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤)))) |
| 4 | | fndm 5357 |
. . . . . . . . . . 11
⊢ (𝑔 Fn 𝑧 → dom 𝑔 = 𝑧) |
| 5 | 4 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 = 𝑧) |
| 6 | 5 | eleq1d 2265 |
. . . . . . . . 9
⊢ ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → (dom 𝑔 ∈ On ↔ 𝑧 ∈ On)) |
| 7 | 6 | biimprcd 160 |
. . . . . . . 8
⊢ (𝑧 ∈ On → ((𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On)) |
| 8 | 7 | rexlimiv 2608 |
. . . . . . 7
⊢
(∃𝑧 ∈ On
(𝑔 Fn 𝑧 ∧ ∀𝑤 ∈ 𝑧 (𝑔‘𝑤) = (𝐹‘(𝑔 ↾ 𝑤))) → dom 𝑔 ∈ On) |
| 9 | 3, 8 | sylbi 121 |
. . . . . 6
⊢ (𝑔 ∈ 𝐴 → dom 𝑔 ∈ On) |
| 10 | | eleq1a 2268 |
. . . . . 6
⊢ (dom
𝑔 ∈ On → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) |
| 11 | 9, 10 | syl 14 |
. . . . 5
⊢ (𝑔 ∈ 𝐴 → (𝑧 = dom 𝑔 → 𝑧 ∈ On)) |
| 12 | 11 | rexlimiv 2608 |
. . . 4
⊢
(∃𝑔 ∈
𝐴 𝑧 = dom 𝑔 → 𝑧 ∈ On) |
| 13 | 12 | abssi 3258 |
. . 3
⊢ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On |
| 14 | | ssorduni 4523 |
. . 3
⊢ ({𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} ⊆ On → Ord ∪ {𝑧
∣ ∃𝑔 ∈
𝐴 𝑧 = dom 𝑔}) |
| 15 | 13, 14 | ax-mp 5 |
. 2
⊢ Ord ∪ {𝑧
∣ ∃𝑔 ∈
𝐴 𝑧 = dom 𝑔} |
| 16 | 1 | recsfval 6373 |
. . . . 5
⊢
recs(𝐹) = ∪ 𝐴 |
| 17 | 16 | dmeqi 4867 |
. . . 4
⊢ dom
recs(𝐹) = dom ∪ 𝐴 |
| 18 | | dmuni 4876 |
. . . 4
⊢ dom ∪ 𝐴 =
∪ 𝑔 ∈ 𝐴 dom 𝑔 |
| 19 | | vex 2766 |
. . . . . 6
⊢ 𝑔 ∈ V |
| 20 | 19 | dmex 4932 |
. . . . 5
⊢ dom 𝑔 ∈ V |
| 21 | 20 | dfiun2 3950 |
. . . 4
⊢ ∪ 𝑔 ∈ 𝐴 dom 𝑔 = ∪ {𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔} |
| 22 | 17, 18, 21 | 3eqtri 2221 |
. . 3
⊢ dom
recs(𝐹) = ∪ {𝑧
∣ ∃𝑔 ∈
𝐴 𝑧 = dom 𝑔} |
| 23 | | ordeq 4407 |
. . 3
⊢ (dom
recs(𝐹) = ∪ {𝑧
∣ ∃𝑔 ∈
𝐴 𝑧 = dom 𝑔} → (Ord dom recs(𝐹) ↔ Ord ∪
{𝑧 ∣ ∃𝑔 ∈ 𝐴 𝑧 = dom 𝑔})) |
| 24 | 22, 23 | ax-mp 5 |
. 2
⊢ (Ord dom
recs(𝐹) ↔ Ord ∪ {𝑧
∣ ∃𝑔 ∈
𝐴 𝑧 = dom 𝑔}) |
| 25 | 15, 24 | mpbir 146 |
1
⊢ Ord dom
recs(𝐹) |