ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetf GIF version

Theorem xmetf 13853
Description: Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmetf (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)

Proof of Theorem xmetf
Dummy variables π‘₯ 𝑦 𝑧 𝑒 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4756 . . . . . 6 Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* β†‘π‘š (𝑒 Γ— 𝑒)) ∣ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑒 (((π‘₯𝑑𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑒 (π‘₯𝑑𝑦) ≀ ((𝑧𝑑π‘₯) +𝑒 (𝑧𝑑𝑦)))})
2 df-xmet 13451 . . . . . . 7 ∞Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* β†‘π‘š (𝑒 Γ— 𝑒)) ∣ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑒 (((π‘₯𝑑𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑒 (π‘₯𝑑𝑦) ≀ ((𝑧𝑑π‘₯) +𝑒 (𝑧𝑑𝑦)))})
32releqi 4710 . . . . . 6 (Rel ∞Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* β†‘π‘š (𝑒 Γ— 𝑒)) ∣ βˆ€π‘₯ ∈ 𝑒 βˆ€π‘¦ ∈ 𝑒 (((π‘₯𝑑𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑒 (π‘₯𝑑𝑦) ≀ ((𝑧𝑑π‘₯) +𝑒 (𝑧𝑑𝑦)))}))
41, 3mpbir 146 . . . . 5 Rel ∞Met
5 relelfvdm 5548 . . . . 5 ((Rel ∞Met ∧ 𝐷 ∈ (∞Metβ€˜π‘‹)) β†’ 𝑋 ∈ dom ∞Met)
64, 5mpan 424 . . . 4 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 ∈ dom ∞Met)
7 isxmet 13848 . . . 4 (𝑋 ∈ dom ∞Met β†’ (𝐷 ∈ (∞Metβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))))
86, 7syl 14 . . 3 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐷 ∈ (∞Metβ€˜π‘‹) ↔ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦))))))
98ibi 176 . 2 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ (𝐷:(𝑋 Γ— 𝑋)βŸΆβ„* ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (((π‘₯𝐷𝑦) = 0 ↔ π‘₯ = 𝑦) ∧ βˆ€π‘§ ∈ 𝑋 (π‘₯𝐷𝑦) ≀ ((𝑧𝐷π‘₯) +𝑒 (𝑧𝐷𝑦)))))
109simpld 112 1 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆβ„*)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   = wceq 1353   ∈ wcel 2148  βˆ€wral 2455  {crab 2459  Vcvv 2738   class class class wbr 4004   ↦ cmpt 4065   Γ— cxp 4625  dom cdm 4627  Rel wrel 4632  βŸΆwf 5213  β€˜cfv 5217  (class class class)co 5875   β†‘π‘š cmap 6648  0cc0 7811  β„*cxr 7991   ≀ cle 7993   +𝑒 cxad 9770  βˆžMetcxmet 13443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-pnf 7994  df-mnf 7995  df-xr 7996  df-xmet 13451
This theorem is referenced by:  xmetcl  13855  xmetdmdm  13859  xmetpsmet  13872  xmettpos  13873  xmetres2  13882  xmetres  13885  xmeterval  13938  xmeter  13939  xmetresbl  13943  comet  14002  bdxmet  14004  bdbl  14006  txmetcnp  14021
  Copyright terms: Public domain W3C validator