![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xmetf | GIF version |
Description: Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmetf | β’ (π· β (βMetβπ) β π·:(π Γ π)βΆβ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptrel 4756 | . . . . . 6 β’ Rel (π β V β¦ {π β (β* βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) | |
2 | df-xmet 13451 | . . . . . . 7 β’ βMet = (π β V β¦ {π β (β* βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))}) | |
3 | 2 | releqi 4710 | . . . . . 6 β’ (Rel βMet β Rel (π β V β¦ {π β (β* βπ (π Γ π)) β£ βπ₯ β π βπ¦ β π (((π₯ππ¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯ππ¦) β€ ((π§ππ₯) +π (π§ππ¦)))})) |
4 | 1, 3 | mpbir 146 | . . . . 5 β’ Rel βMet |
5 | relelfvdm 5548 | . . . . 5 β’ ((Rel βMet β§ π· β (βMetβπ)) β π β dom βMet) | |
6 | 4, 5 | mpan 424 | . . . 4 β’ (π· β (βMetβπ) β π β dom βMet) |
7 | isxmet 13848 | . . . 4 β’ (π β dom βMet β (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) | |
8 | 6, 7 | syl 14 | . . 3 β’ (π· β (βMetβπ) β (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦)))))) |
9 | 8 | ibi 176 | . 2 β’ (π· β (βMetβπ) β (π·:(π Γ π)βΆβ* β§ βπ₯ β π βπ¦ β π (((π₯π·π¦) = 0 β π₯ = π¦) β§ βπ§ β π (π₯π·π¦) β€ ((π§π·π₯) +π (π§π·π¦))))) |
10 | 9 | simpld 112 | 1 β’ (π· β (βMetβπ) β π·:(π Γ π)βΆβ*) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 = wceq 1353 β wcel 2148 βwral 2455 {crab 2459 Vcvv 2738 class class class wbr 4004 β¦ cmpt 4065 Γ cxp 4625 dom cdm 4627 Rel wrel 4632 βΆwf 5213 βcfv 5217 (class class class)co 5875 βπ cmap 6648 0cc0 7811 β*cxr 7991 β€ cle 7993 +π cxad 9770 βMetcxmet 13443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4122 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-cnex 7902 ax-resscn 7903 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-id 4294 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-fv 5225 df-ov 5878 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-map 6650 df-pnf 7994 df-mnf 7995 df-xr 7996 df-xmet 13451 |
This theorem is referenced by: xmetcl 13855 xmetdmdm 13859 xmetpsmet 13872 xmettpos 13873 xmetres2 13882 xmetres 13885 xmeterval 13938 xmeter 13939 xmetresbl 13943 comet 14002 bdxmet 14004 bdbl 14006 txmetcnp 14021 |
Copyright terms: Public domain | W3C validator |