ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetrel GIF version

Theorem xmetrel 14522
Description: The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Assertion
Ref Expression
xmetrel Rel ∞Met

Proof of Theorem xmetrel
Dummy variables 𝑒 𝑑 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4791 . 2 Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
2 df-xmet 14043 . . 3 ∞Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
32releqi 4743 . 2 (Rel ∞Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}))
41, 3mpbir 146 1 Rel ∞Met
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wral 2472  {crab 2476  Vcvv 2760   class class class wbr 4030  cmpt 4091   × cxp 4658  Rel wrel 4665  (class class class)co 5919  𝑚 cmap 6704  0cc0 7874  *cxr 8055  cle 8057   +𝑒 cxad 9839  ∞Metcxmet 14035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-opab 4092  df-mpt 4093  df-xp 4666  df-rel 4667  df-xmet 14043
This theorem is referenced by:  ismet2  14533  xmeteq0  14538  xmettri2  14540  xmetpsmet  14548  xmetres2  14558  blex  14566  blval  14568  blf  14589  mopnval  14621  comet  14678
  Copyright terms: Public domain W3C validator