ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetrel GIF version

Theorem xmetrel 14663
Description: The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Assertion
Ref Expression
xmetrel Rel ∞Met

Proof of Theorem xmetrel
Dummy variables 𝑒 𝑑 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4795 . 2 Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
2 df-xmet 14176 . . 3 ∞Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
32releqi 4747 . 2 (Rel ∞Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}))
41, 3mpbir 146 1 Rel ∞Met
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wral 2475  {crab 2479  Vcvv 2763   class class class wbr 4034  cmpt 4095   × cxp 4662  Rel wrel 4669  (class class class)co 5925  𝑚 cmap 6716  0cc0 7896  *cxr 8077  cle 8079   +𝑒 cxad 9862  ∞Metcxmet 14168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-mpt 4097  df-xp 4670  df-rel 4671  df-xmet 14176
This theorem is referenced by:  ismet2  14674  xmeteq0  14679  xmettri2  14681  xmetpsmet  14689  xmetres2  14699  blex  14707  blval  14709  blf  14730  mopnval  14762  comet  14819
  Copyright terms: Public domain W3C validator