Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmetrel | GIF version |
Description: The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.) |
Ref | Expression |
---|---|
xmetrel | ⊢ Rel ∞Met |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptrel 4739 | . 2 ⊢ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | |
2 | df-xmet 12782 | . . 3 ⊢ ∞Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | |
3 | 2 | releqi 4694 | . 2 ⊢ (Rel ∞Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})) |
4 | 1, 3 | mpbir 145 | 1 ⊢ Rel ∞Met |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1348 ∀wral 2448 {crab 2452 Vcvv 2730 class class class wbr 3989 ↦ cmpt 4050 × cxp 4609 Rel wrel 4616 (class class class)co 5853 ↑𝑚 cmap 6626 0cc0 7774 ℝ*cxr 7953 ≤ cle 7955 +𝑒 cxad 9727 ∞Metcxmet 12774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-mpt 4052 df-xp 4617 df-rel 4618 df-xmet 12782 |
This theorem is referenced by: ismet2 13148 xmeteq0 13153 xmettri2 13155 xmetpsmet 13163 xmetres2 13173 blex 13181 blval 13183 blf 13204 mopnval 13236 comet 13293 |
Copyright terms: Public domain | W3C validator |