| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmetrel | GIF version | ||
| Description: The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.) |
| Ref | Expression |
|---|---|
| xmetrel | ⊢ Rel ∞Met |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptrel 4813 | . 2 ⊢ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | |
| 2 | df-xmet 14376 | . . 3 ⊢ ∞Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | |
| 3 | 2 | releqi 4765 | . 2 ⊢ (Rel ∞Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})) |
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Rel ∞Met |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∀wral 2485 {crab 2489 Vcvv 2773 class class class wbr 4050 ↦ cmpt 4112 × cxp 4680 Rel wrel 4687 (class class class)co 5956 ↑𝑚 cmap 6747 0cc0 7940 ℝ*cxr 8121 ≤ cle 8123 +𝑒 cxad 9907 ∞Metcxmet 14368 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-opab 4113 df-mpt 4114 df-xp 4688 df-rel 4689 df-xmet 14376 |
| This theorem is referenced by: ismet2 14896 xmeteq0 14901 xmettri2 14903 xmetpsmet 14911 xmetres2 14921 blex 14929 blval 14931 blf 14952 mopnval 14984 comet 15041 |
| Copyright terms: Public domain | W3C validator |