ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetrel GIF version

Theorem xmetrel 14885
Description: The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Assertion
Ref Expression
xmetrel Rel ∞Met

Proof of Theorem xmetrel
Dummy variables 𝑒 𝑑 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4813 . 2 Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
2 df-xmet 14376 . . 3 ∞Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
32releqi 4765 . 2 (Rel ∞Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}))
41, 3mpbir 146 1 Rel ∞Met
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wral 2485  {crab 2489  Vcvv 2773   class class class wbr 4050  cmpt 4112   × cxp 4680  Rel wrel 4687  (class class class)co 5956  𝑚 cmap 6747  0cc0 7940  *cxr 8121  cle 8123   +𝑒 cxad 9907  ∞Metcxmet 14368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-opab 4113  df-mpt 4114  df-xp 4688  df-rel 4689  df-xmet 14376
This theorem is referenced by:  ismet2  14896  xmeteq0  14901  xmettri2  14903  xmetpsmet  14911  xmetres2  14921  blex  14929  blval  14931  blf  14952  mopnval  14984  comet  15041
  Copyright terms: Public domain W3C validator