| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xmetrel | GIF version | ||
| Description: The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.) | 
| Ref | Expression | 
|---|---|
| xmetrel | ⊢ Rel ∞Met | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mptrel 4794 | . 2 ⊢ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | |
| 2 | df-xmet 14100 | . . 3 ⊢ ∞Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | |
| 3 | 2 | releqi 4746 | . 2 ⊢ (Rel ∞Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})) | 
| 4 | 1, 3 | mpbir 146 | 1 ⊢ Rel ∞Met | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∀wral 2475 {crab 2479 Vcvv 2763 class class class wbr 4033 ↦ cmpt 4094 × cxp 4661 Rel wrel 4668 (class class class)co 5922 ↑𝑚 cmap 6707 0cc0 7879 ℝ*cxr 8060 ≤ cle 8062 +𝑒 cxad 9845 ∞Metcxmet 14092 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-mpt 4096 df-xp 4669 df-rel 4670 df-xmet 14100 | 
| This theorem is referenced by: ismet2 14590 xmeteq0 14595 xmettri2 14597 xmetpsmet 14605 xmetres2 14615 blex 14623 blval 14625 blf 14646 mopnval 14678 comet 14735 | 
| Copyright terms: Public domain | W3C validator |