Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmetrel | GIF version |
Description: The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.) |
Ref | Expression |
---|---|
xmetrel | ⊢ Rel ∞Met |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptrel 4707 | . 2 ⊢ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | |
2 | df-xmet 12335 | . . 3 ⊢ ∞Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}) | |
3 | 2 | releqi 4662 | . 2 ⊢ (Rel ∞Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ* ↑𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥 ∈ 𝑒 ∀𝑦 ∈ 𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})) |
4 | 1, 3 | mpbir 145 | 1 ⊢ Rel ∞Met |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1332 ∀wral 2432 {crab 2436 Vcvv 2709 class class class wbr 3961 ↦ cmpt 4021 × cxp 4577 Rel wrel 4584 (class class class)co 5814 ↑𝑚 cmap 6582 0cc0 7711 ℝ*cxr 7890 ≤ cle 7892 +𝑒 cxad 9655 ∞Metcxmet 12327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-opab 4022 df-mpt 4023 df-xp 4585 df-rel 4586 df-xmet 12335 |
This theorem is referenced by: ismet2 12701 xmeteq0 12706 xmettri2 12708 xmetpsmet 12716 xmetres2 12726 blex 12734 blval 12736 blf 12757 mopnval 12789 comet 12846 |
Copyright terms: Public domain | W3C validator |