ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetrel GIF version

Theorem xmetrel 13736
Description: The class of extended metrics is a relation. (Contributed by Jim Kingdon, 20-Apr-2023.)
Assertion
Ref Expression
xmetrel Rel ∞Met

Proof of Theorem xmetrel
Dummy variables 𝑒 𝑑 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptrel 4755 . 2 Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
2 df-xmet 13339 . . 3 ∞Met = (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))})
32releqi 4709 . 2 (Rel ∞Met ↔ Rel (𝑒 ∈ V ↦ {𝑑 ∈ (ℝ*𝑚 (𝑒 × 𝑒)) ∣ ∀𝑥𝑒𝑦𝑒 (((𝑥𝑑𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑒 (𝑥𝑑𝑦) ≤ ((𝑧𝑑𝑥) +𝑒 (𝑧𝑑𝑦)))}))
41, 3mpbir 146 1 Rel ∞Met
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wral 2455  {crab 2459  Vcvv 2737   class class class wbr 4003  cmpt 4064   × cxp 4624  Rel wrel 4631  (class class class)co 5874  𝑚 cmap 6647  0cc0 7810  *cxr 7989  cle 7991   +𝑒 cxad 9768  ∞Metcxmet 13331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-opab 4065  df-mpt 4066  df-xp 4632  df-rel 4633  df-xmet 13339
This theorem is referenced by:  ismet2  13747  xmeteq0  13752  xmettri2  13754  xmetpsmet  13762  xmetres2  13772  blex  13780  blval  13782  blf  13803  mopnval  13835  comet  13892
  Copyright terms: Public domain W3C validator